The multiverse of data preprocessing and analysis in graph-based fMRI: A systematic literature review of analytical choices fed into a decision support tool for informed analysis

被引:1
作者
Kristanto, Daniel [1 ]
Burkhardt, Micha [1 ]
Thiel, Christiane [1 ,2 ,3 ]
Debener, Stefan [1 ,2 ,3 ]
Giessing, Carsten [1 ,2 ]
Hildebrandt, Andrea [1 ,2 ,3 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Dept Psychol, D-26129 Oldenburg, Germany
[2] Carl von Ossietzky Univ Oldenburg, Res Ctr Neurosensory Sci, Oldenburg, Germany
[3] Carl von Ossietzky Univ Oldenburg, Cluster Excellence Hearing4All, Oldenburg, Germany
关键词
Functional magnetic resonance imaging - fMRI; Network neuroscience; Graph theory; Robustness; Multiverse analysis; Forking paths; Data preprocessing; Shiny app; FUNCTIONAL CONNECTIVITY; MOTION ARTIFACT; NETWORK; BRAIN; NEUROSCIENCE; RELIABILITY; SENSITIVITY; STRATEGIES;
D O I
10.1016/j.neubiorev.2024.105846
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
The large number of different analytical choices used by researchers is partly responsible for the challenge of replication in neuroimaging studies. For an exhaustive robustness analysis, knowledge of the full space of analytical options is essential. We conducted a systematic literature review to identify the analytical decisions in functional neuroimaging data preprocessing and analysis in the emerging field of cognitive network neuroscience. We found 61 different steps, with 17 of them having debatable parameter choices. Scrubbing, global signal regression, and spatial smoothing are among the controversial steps. There is no standardized order in which different steps are applied, and the parameter settings within several steps vary widely across studies. By aggregating the pipelines across studies, we propose three taxonomic levels to categorize analytical choices: 1) inclusion or exclusion of specific steps, 2) parameter tuning within steps, and 3) distinct sequencing of steps. We have developed a decision support application with high educational value called METEOR to facilitate access to the data in order to design well-informed robustness (multiverse) analysis.
引用
收藏
页数:21
相关论文
共 52 条
[1]   Effects of different smoothing on global and regional resting functional connectivity [J].
Alahmadi, Adnan A. S. .
NEURORADIOLOGY, 2021, 63 (01) :99-109
[2]   Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank [J].
Alfaro-Almagro, Fidel ;
Jenkinson, Mark ;
Bangerter, Neal K. ;
Andersson, Jesper L. R. ;
Griffanti, Ludovica ;
Douaud, Gwenaelle ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Hernandez-Fernandez, Moises ;
Vallee, Emmanuel ;
Vidaurre, Diego ;
Webster, Matthew ;
McCarthy, Paul ;
Rorden, Christopher ;
Daducci, Alessandro ;
Alexander, Daniel C. ;
Zhang, Hui ;
Dragonu, Iulius ;
Matthews, Paul M. ;
Miller, Karla L. ;
Smith, Stephen M. .
NEUROIMAGE, 2018, 166 :400-424
[3]  
[Anonymous], 2020, R LANG ENV STAT COMP
[4]   Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data [J].
Aurich, Nathassia K. ;
Alves Filho, Jose O. ;
Marques da Silva, Ana M. ;
Franco, Alexandre R. .
FRONTIERS IN NEUROSCIENCE, 2015, 9
[5]   Neuroscience Needs Network Science [J].
Barabasi, Daniel L. ;
Bianconi, Ginestra ;
Bullmore, Ed ;
Burgess, Mark ;
Chung, SueYeon ;
Eliassi-Rad, Tina ;
George, Dileep ;
Kovacs, Istvan A. ;
Makse, Hernan ;
Nichols, Thomas E. ;
Papadimitriou, Christos ;
Sporns, Olaf ;
Stachenfeld, Kim ;
Toroczkai, Zoltan ;
Towlson, Emma K. ;
Zador, Anthony M. ;
Zeng, Hongkui ;
Barabasi, Albert-Laszlo ;
Bernard, Amy ;
Buzsaki, Gyorgy .
JOURNAL OF NEUROSCIENCE, 2023, 43 (34) :5989-5995
[6]   Small-World Brain Networks Revisited [J].
Bassett, Danielle S. ;
Bullmore, Edward T. .
NEUROSCIENTIST, 2017, 23 (05) :499-516
[7]   Connecting brain and behavior in clinical neuroscience: A network approach [J].
Blanken, Tessa F. ;
Bathelt, Joe ;
Deserno, Marie K. ;
Voge, Lily ;
Borsboom, Denny ;
Douw, Linda .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2021, 130 :81-90
[8]   Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold [J].
Bordier, Cecile ;
Nicolini, Carlo ;
Bifone, Angelo .
FRONTIERS IN NEUROSCIENCE, 2017, 11
[9]   Spatial Stability of Functional Networks: A Measure to Assess the Robustness of Graph-Theoretical Metrics to Spatial Errors Related to Brain Parcellation [J].
Bottino, Francesca ;
Lucignani, Martina ;
Pasquini, Luca ;
Mastrogiovanni, Michele ;
Gazzellini, Simone ;
Ritrovato, Matteo ;
Longo, Daniela ;
Figa-Talamanca, Lorenzo ;
Rossi Espagnet, Maria Camilla ;
Napolitano, Antonio .
FRONTIERS IN NEUROSCIENCE, 2022, 15
[10]   Variability in the analysis of a single neuroimaging dataset by many teams [J].
Botvinik-Nezer, Rotem ;
Holzmeister, Felix ;
Camerer, Colin F. ;
Dreber, Anna ;
Huber, Juergen ;
Johannesson, Magnus ;
Kirchler, Michael ;
Iwanir, Roni ;
Mumford, Jeanette A. ;
Adcock, R. Alison ;
Avesani, Paolo ;
Baczkowski, Blazej M. ;
Bajracharya, Aahana ;
Bakst, Leah ;
Ball, Sheryl ;
Barilari, Marco ;
Bault, Nadege ;
Beaton, Derek ;
Beitner, Julia ;
Benoit, Roland G. ;
Berkers, Ruud M. W. J. ;
Bhanji, Jamil P. ;
Biswal, Bharat B. ;
Bobadilla-Suarez, Sebastian ;
Bortolini, Tiago ;
Bottenhorn, Katherine L. ;
Bowring, Alexander ;
Braem, Senne ;
Brooks, Hayley R. ;
Brudner, Emily G. ;
Calderon, Cristian B. ;
Camilleri, Julia A. ;
Castrellon, Jaime J. ;
Cecchetti, Luca ;
Cieslik, Edna C. ;
Cole, Zachary J. ;
Collignon, Olivier ;
Cox, Robert W. ;
Cunningham, William A. ;
Czoschke, Stefan ;
Dadi, Kamalaker ;
Davis, Charles P. ;
Luca, Alberto De ;
Delgado, Mauricio R. ;
Demetriou, Lysia ;
Dennison, Jeffrey B. ;
Di, Xin ;
Dickie, Erin W. ;
Dobryakova, Ekaterina ;
Donnat, Claire L. .
NATURE, 2020, 582 (7810) :84-+