Detecting and tracking moving objects in defocus blur scenes

被引:0
作者
Hu, Fen [1 ]
Yang, Peng [1 ]
Dou, Jie [1 ]
Dou, Lei [1 ]
机构
[1] Nanjing Univ Sci & Technol, Natl Key Lab Transient Phys, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Object tracking; Defocus blur; Blurred video tracking; Deblurring; SIAMESE NETWORKS;
D O I
10.1016/j.jvcir.2024.104259
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Object tracking stands as a cornerstone challenge within computer vision, with blurriness analysis representing a burgeoning field of interest. Among the various forms of blur encountered in natural scenes, defocus blur remains significantly underexplored. To bridge this gap, this article introduces the Defocus Blur Video Object Tracking (DBVOT) dataset, specifically crafted to facilitate research in visual object tracking under defocus blur conditions. We conduct a comprehensive performance analysis of 18 state-of-the-art object tracking methods on this unique dataset. Additionally, we propose a selective deblurring framework based on Deblurring Auxiliary Learning Net (DID-Anet), innovatively designed to tackle the complexities of defocus blur. This framework integrates a novel defocus blurriness metric for the smart deblurring of video frames, thereby enhancing the efficacy of tracking methods in defocus blur scenarios. Our extensive experimental evaluations underscore the significant advancements in tracking accuracy achieved by incorporating our proposed framework with leading tracking technologies.
引用
收藏
页数:12
相关论文
共 63 条
[11]   Discriminative Scale Space Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (08) :1561-1575
[12]   Adaptive Color Attributes for Real-Time Visual Tracking [J].
Danelljan, Martin ;
Khan, Fahad Shahbaz ;
Felsberg, Michael ;
van de Weijer, Joost .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :1090-1097
[13]   LaSOT: A High-quality Benchmark for Large-scale Single Object Tracking [J].
Fan, Heng ;
Lin, Liting ;
Yang, Fan ;
Chu, Peng ;
Deng, Ge ;
Yu, Sijia ;
Bai, Hexin ;
Xu, Yong ;
Liao, Chunyuan ;
Ling, Haibin .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5369-5378
[14]   Exploring the potential of Siamese network for RGBT object tracking [J].
Feng, Liangliang ;
Song, Kechen ;
Wang, Junyi ;
Yan, Yunhui .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
[15]   Single image defocus map estimation through patch blurriness classification and its applications [J].
Galetto, Fernando ;
Deng, Guang .
VISUAL COMPUTER, 2023, 39 (10) :4555-4571
[16]   Need for Speed: A Benchmark for Higher Frame Rate Object Tracking [J].
Galoogahi, Hamed Kiani ;
Fagg, Ashton ;
Huang, Chen ;
Ramanan, Deva ;
Lucey, Simon .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1134-1143
[17]  
Galoogahi HK, 2017, IEEE I CONF COMP VIS, P1144, DOI [10.1109/ICCV.2017.129, 10.1109/ICCV.2017.128]
[18]   Multi-Channel Correlation Filters [J].
Galoogahi, Hamed Kiani ;
Sim, Terence ;
Lucey, Simon .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :3072-3079
[19]   Vectorized Evidential Learning for Weakly-Supervised Temporal Action Localization [J].
Gao, Junyu ;
Chen, Mengyuan ;
Xu, Changsheng .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) :15949-15963
[20]   Graph Convolutional Tracking [J].
Gao, Junyu ;
Zhang, Tianzhu ;
Xu, Changsheng .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4644-4654