Detecting and tracking moving objects in defocus blur scenes

被引:0
作者
Hu, Fen [1 ]
Yang, Peng [1 ]
Dou, Jie [1 ]
Dou, Lei [1 ]
机构
[1] Nanjing Univ Sci & Technol, Natl Key Lab Transient Phys, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Object tracking; Defocus blur; Blurred video tracking; Deblurring; SIAMESE NETWORKS;
D O I
10.1016/j.jvcir.2024.104259
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Object tracking stands as a cornerstone challenge within computer vision, with blurriness analysis representing a burgeoning field of interest. Among the various forms of blur encountered in natural scenes, defocus blur remains significantly underexplored. To bridge this gap, this article introduces the Defocus Blur Video Object Tracking (DBVOT) dataset, specifically crafted to facilitate research in visual object tracking under defocus blur conditions. We conduct a comprehensive performance analysis of 18 state-of-the-art object tracking methods on this unique dataset. Additionally, we propose a selective deblurring framework based on Deblurring Auxiliary Learning Net (DID-Anet), innovatively designed to tackle the complexities of defocus blur. This framework integrates a novel defocus blurriness metric for the smart deblurring of video frames, thereby enhancing the efficacy of tracking methods in defocus blur scenarios. Our extensive experimental evaluations underscore the significant advancements in tracking accuracy achieved by incorporating our proposed framework with leading tracking technologies.
引用
收藏
页数:12
相关论文
共 63 条
  • [1] Abuolaim Abdullah, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12355), P111, DOI 10.1007/978-3-030-58607-2_7
  • [2] Learning to Reduce Defocus Blur by Realistically Modeling Dual-Pixel Data
    Abuolaim, Abdullah
    Delbracio, Mauricio
    Kelly, Damien
    Brown, Michael S.
    Milanfar, Peyman
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2269 - 2278
  • [3] [Anonymous], 2014, P BRIT MACH VIS C NO
  • [4] Staple: Complementary Learners for Real-Time Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Golodetz, Stuart
    Miksik, Ondrej
    Torr, Philip H. S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1401 - 1409
  • [5] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [6] Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
  • [7] Blind image blur assessment by using valid reblur range and histogram shape difference
    Bong, David Boon Liang
    Khoo, Bee Ee
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2014, 29 (06) : 699 - 710
  • [8] Siamese Box Adaptive Network for Visual Tracking
    Chen, Zedu
    Zhong, Bineng
    Li, Guorong
    Zhang, Shengping
    Ji, Rongrong
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6667 - 6676
  • [9] Visual Tracking via Adaptive Spatially-Regularized Correlation Filters
    Dai, Kenan
    Wang, Dong
    Lu, Huchuan
    Sun, Chong
    Li, Jianhua
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4665 - 4674
  • [10] ECO: Efficient Convolution Operators for Tracking
    Danelljan, Martin
    Bhat, Goutam
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6931 - 6939