Affine Standard Lyndon Words: A-Type

被引:1
作者
Avdieiev, Yehor [1 ]
Tsymbaliuk, Alexander [2 ]
机构
[1] Univ Bonn, Dept Math, D-53113 Bonn, Germany
[2] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
关键词
QUANTUM; BASES;
D O I
10.1093/imrn/rnae197
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize an algorithm of Leclerc [ ] describing explicitly the bijection of Lalonde-Ram [ ] from finite to affine Lie algebras. In type $A_{n}<^>{(1)}$, we compute all affine standard Lyndon words for any order of the simple roots and establish some properties of the induced orders on the positive affine roots.
引用
收藏
页码:13488 / 13524
页数:37
相关论文
共 12 条
[1]   CONVEX BASES OF PBW TYPE FOR QUANTUM AFFINE ALGEBRAS [J].
BECK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :193-199
[2]   A BASIS OF TYPE POINCARE-BIRKHOFF-WITT FOR THE QUANTUM ALGEBRA OF (SL)OVER-CAP(2) [J].
DAMIANI, I .
JOURNAL OF ALGEBRA, 1993, 161 (02) :291-310
[3]  
Green JA, 1997, PROG MATH, V141, P273
[4]   STANDARD LYNDON BASES OF LIE-ALGEBRAS AND ENVELOPING-ALGEBRAS [J].
LALONDE, P ;
RAM, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (05) :1821-1830
[5]   Dual canonical bases, quantum shuffles and q-characters [J].
Leclerc, B .
MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (04) :691-732
[6]  
Lothaire M., 1997, COMBINATORICS WORDS
[7]   Quantum loop groups and shuffle algebras via Lyndon words [J].
Negut, Andrei ;
Tsymbaliuk, Alexander .
ADVANCES IN MATHEMATICS, 2024, 439
[9]   Quantum groups and quantum shuffles [J].
Rosso, M .
INVENTIONES MATHEMATICAE, 1998, 133 (02) :399-416
[10]  
Rosso M., 2002, PREPRINT