Applying eXplainable AI Techniques to Interpret Machine Learning Predictive Models for the Analysis of Problematic Internet Use among Adolescents

被引:0
作者
Stanimirovic, Aleksandar S. [1 ]
Nikolic, Mina S. [1 ]
Jovic, Jelena J. [2 ]
Ristic, Dragana I. Ignjatovic [3 ,4 ]
Corac, Aleksandar M. [2 ]
Stoimenov, Leonid V. [1 ]
Peric, Zoran H. [1 ]
机构
[1] Univ Nis, Fac Elect Engn, Aleksandra Medvedeva 14, Nish 18000, Serbia
[2] Univ Pristina Kosovska Mitrov, Fac Med, Kosovska Mitrovica, Serbia
[3] Univ Kragujevac, Fac Med Sci, Kragujevac, Serbia
[4] Clin Ctr Kragujevac, Psychiat Clin, Kragujevac, Serbia
关键词
Artificial intelligence; Machine learning; Medical services; Addiction; TEMPS-A; TEMPERAMENT;
D O I
10.5755/j02.eie.36316
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
research focusses on the potential application of artificial intelligence (AI) techniques in the analysis of behavioural addictions, specifically addressing problematic Internet use among adolescents. Using tabular data from a representative sample from Serbian high schools, the authors investigated the feasibility of employing eXplainable AI (XAI) techniques, placing special emphasis on feature selection and feature importance methods. The results indicate a successful application to tabular data, with global interpretations that effectively describe predictive models. These findings align with previous research, which confirms both relevance and accuracy. Interpretations of individual predictions reveal the impact of features, especially in cases of misclassified instances, underscoring the significance of XAI techniques in error analysis and resolution. Although AI's influence on the medical domain is substantial, the current state of XAI techniques, a crucial role in problem identification and the validation of AI models.
引用
收藏
页码:63 / 72
页数:10
相关论文
共 45 条
  • [1] Explainability for artificial intelligence in healthcare: a multidisciplinary perspective
    Amann, Julia
    Blasimme, Alessandro
    Vayena, Effy
    Frey, Dietmar
    Madai, Vince I.
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
  • [2] Backovic Duuan, 2007, Vojnosanit Pregl, V64, P331, DOI 10.2298/VSP0705331B
  • [3] Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI
    Barredo Arrieta, Alejandro
    Diaz-Rodriguez, Natalia
    Del Ser, Javier
    Bennetot, Adrien
    Tabik, Siham
    Barbado, Alberto
    Garcia, Salvador
    Gil-Lopez, Sergio
    Molina, Daniel
    Benjamins, Richard
    Chatila, Raja
    Herrera, Francisco
    [J]. INFORMATION FUSION, 2020, 58 : 82 - 115
  • [4] Affective Design Analysis of Explainable Artificial Intelligence (XAI): A User-Centric Perspective
    Bernardo, Ezekiel
    Seva, Rosemary
    [J]. INFORMATICS-BASEL, 2023, 10 (01):
  • [5] SMOTE for high-dimensional class-imbalanced data
    Blagus, Rok
    Lusa, Lara
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [6] Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission
    Caruana, Rich
    Lou, Yin
    Gehrke, Johannes
    Koch, Paul
    Sturm, Marc
    Elhadad, Noemie
    [J]. KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 1721 - 1730
  • [7] Chakrobartty S, 2021, DIGITAL INNOVATION AND ENTREPRENEURSHIP (AMCIS 2021)
  • [8] SMOTE: Synthetic minority over-sampling technique
    Chawla, Nitesh V.
    Bowyer, Kevin W.
    Hall, Lawrence O.
    Kegelmeyer, W. Philip
    [J]. 2002, American Association for Artificial Intelligence (16)
  • [9] Chen JB, 2018, PR MACH LEARN RES, V80
  • [10] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794