The Neumann Green function and scale-invariant regularity estimates for elliptic equations with Neumann data in Lipschitz domains

被引:0
作者
Kim, Seick [1 ]
Sakellaris, Georgios [2 ]
机构
[1] Yonsei Univ, Dept Math, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Aristotle Univ Thessaloniki, Sch Math, Thessaloniki 54124, Greece
基金
新加坡国家研究基金会;
关键词
Primary; 35J08; 35J25; Secondary; 35B45; 35D30; SYSTEMS;
D O I
10.1007/s00526-024-02825-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct the Neumann Green function and establish scale-invariant regularity estimates for solutions to the Neumann problem for the elliptic operator Lu=-div(A del u+bu)+c<middle dot>del u+du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Lu=-{\text {div}}({\textbf{A}} \nabla u + \varvec{b} u) + \varvec{c} \cdot \nabla u + du$$\end{document} in a Lipschitz domain Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. We assume that A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{A}}$$\end{document} is elliptic and bounded, that the lower order coefficients belong to scale-invariant Lebesgue spaces, and that either d >= divb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge {\text {div}}\varvec{b}$$\end{document} in Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} and b<middle dot>nu >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{b}\cdot \nu \ge 0$$\end{document} on partial derivative Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document} in the sense of distributions, or the analogous condition for c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{c}$$\end{document} holds. We develop the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document} theory, construct the Neumann Green function and show estimates in the respective optimal spaces, and show local and global pointwise estimates for solutions. The main novelty is that our estimates are scale-invariant, since our constants depend on the lower order coefficients only via their norms, and on the Lipschitz domain only via its Lipschitz character. Moreover, our pointwise estimates are shown in the optimal scale-invariant setting for the inhomogeneous terms and the Neumann data.
引用
收藏
页数:45
相关论文
共 26 条
[1]  
Bennett C., 1988, Pure Appl. Math., V129
[2]  
BOJARSKI B, 1988, LECT NOTES MATH, V1351, P52
[3]  
Bottaro G., 1973, Boll. Unione Mat. Ital., IV. Ser., V4, P46
[4]  
Choi J, 2013, T AM MATH SOC, V365, P6283
[5]   Green's function for second order parabolic systems with Neumann boundary condition [J].
Choi, Jongkeun ;
Kim, Seick .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (07) :2834-2860
[6]   HARDY-SPACES AND THE NEUMANN PROBLEM IN L-RHO FOR LAPLACES-EQUATION IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1987, 125 (03) :437-465
[7]   INTERPOLATION OF LINEAR-OPERATORS ON SOBOLEV SPACES [J].
DEVORE, R ;
SCHERER, K .
ANNALS OF MATHEMATICS, 1979, 109 (03) :583-599
[8]  
DiBenedetto E., 2010, Partial Differential Equations, V2, DOI [10.1007/978-0-8176-4552-6, DOI 10.1007/978-0-8176-4552-6, 10.1007/978-0-8176- 4552-6]
[9]   Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions [J].
Droniou, Jerome ;
Vazquez, Juan-Luis .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (04) :413-434
[10]  
Evans L.C., 2015, Textbooks in Mathematics, V1st