PAIRS OF FIXED POINTS FOR A CLASS OF OPERATORS ON HILBERT SPACES

被引:0
|
作者
Mokhtari, Abdelhak [1 ,2 ]
Saoudi, Kamel [3 ,4 ]
Repovs, Dusan D. [5 ,6 ,7 ]
机构
[1] Univ Msila, Fac Math & Informat, Math Dept, Msila, Algeria
[2] ENS Kouba, Dept Math, Lab Fixed Point Theory & Applicat, Algiers, Algeria
[3] Univ Imam Abdulrahman Bin Faisal, Coll Sci Dammam, Dammam 31441, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, POB 1982, Dammam 31441, Saudi Arabia
[5] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[6] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[7] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
来源
FIXED POINT THEORY | 2024年 / 25卷 / 02期
关键词
Hilbert space; potential operator; genus; fixed point theorem; boundary value problem; MULTIPLICITY; EXISTENCE; EQUATION; MAPPINGS; THEOREMS;
D O I
10.24193/fpt-ro.2024.2.14
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, existence of pairs of solutions is obtained for compact potential operators on Hilbert spaces. An application to a second-order boundary value problem is also given as an illustration of our results.
引用
收藏
页码:667 / 676
页数:10
相关论文
共 50 条
  • [41] Common fixed points in cone metric spaces for CJM-pairs
    Di Bari, Cristina
    Saadati, Reza
    Vetro, Pasquale
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (9-10) : 2348 - 2354
  • [42] FIXED POINTS OF A CLASS OF CONTRACTIVE-TYPE MULTIFUNCTIONS ON FUZZY METRIC SPACES
    Ionescu, Cristiana
    Rezapour, Sh
    Samei, M. E.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 3 - 12
  • [43] COMMON FIXED POINTS IN CONE METRIC SPACES FOR MK-PAIRS AND L-PAIRS
    Di Bari, Cristina
    Vetro, Pasquale
    ARS COMBINATORIA, 2011, 99 : 429 - 437
  • [44] APPROXIMATING COMMON FIXED POINTS OF (a, b)-MONOTONE AND NONEXPANSIVE MAPPINGS IN HILBERT SPACES
    Mongkolkeha, Chirasak
    Cho, Yeol Je
    Kumam, Poom
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (09) : 1817 - 1833
  • [45] Fixed points by some iterative algorithms in Banach and Hilbert spaces with some applications
    Ahmed, S. A.
    Ahmed, A. El-Sayed
    Bukhari, Abdulfattah K. A.
    Rajic, Vesna Cojbasic
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 20 (04) : 707 - 717
  • [46] Approximating Fixed Points of Operators Satisfying (RCSC) Condition in Banach Spaces
    Abdeljawad, Thabet
    Ullah, Kifayat
    Ahmad, Junaid
    de la Sen, Manuel
    Khan, Junaid
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [47] FIXED POINT THEOREMS FOR A CLASS OF NONLINEAR OPERATORS IN RIESZ SPACES
    Sun, Jingxian
    Cui, Yujun
    FIXED POINT THEORY, 2013, 14 (01): : 185 - 192
  • [48] Iterative approximation of fixed points of Presic operators on partial metric spaces
    Ilic, Dejan
    Abbas, Mujahid
    Nazir, Talat
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (14-15) : 1634 - 1646
  • [49] Coupled fixed and coincidence points for monotone operators in partial metric spaces
    Alsulami, Saud M.
    Hussain, Nawab
    Alotaibi, Abdullah
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [50] Common fixed points for JH-operators and occasionally weakly biased pairs under relaxed conditions
    Hussain, N.
    Khamsi, M. A.
    Latif, A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) : 2133 - 2140