A Comprehensive Review of Bioinformatics Tools for Genomic Biomarker Discovery Driving Precision Oncology

被引:15
作者
Clark, Alexis J. [1 ]
Lillard Jr, James W. [1 ]
机构
[1] Morehouse Sch Med, Dept Microbiol Biochem & Immunol, Atlanta, GA 30310 USA
关键词
oncology; bioinformatics; biomarker discovery; predictive algorithms; RNA-Seq; ARTIFICIAL-INTELLIGENCE; NETWORK ANALYSIS; DNA; PATHWAY; SEQUENCE; RNA; INFORMATION; ALGORITHMS; WEBGESTALT; ALIGNMENT;
D O I
10.3390/genes15081036
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The rapid advancement of high-throughput technologies, particularly next-generation sequencing (NGS), has revolutionized cancer research by enabling the investigation of genetic variations such as SNPs, copy number variations, gene expression, and protein levels. These technologies have elevated the significance of precision oncology, creating a demand for biomarker identification and validation. This review explores the complex interplay of oncology, cancer biology, and bioinformatics tools, highlighting the challenges in statistical learning, experimental validation, data processing, and quality control that underpin this transformative field. This review outlines the methodologies and applications of bioinformatics tools in cancer genomics research, encompassing tools for data structuring, pathway analysis, network analysis, tools for analyzing biomarker signatures, somatic variant interpretation, genomic data analysis, and visualization tools. Open-source tools and repositories like The Cancer Genome Atlas (TCGA), Genomic Data Commons (GDC), cBioPortal, UCSC Genome Browser, Array Express, and Gene Expression Omnibus (GEO) have emerged to streamline cancer omics data analysis. Bioinformatics has significantly impacted cancer research, uncovering novel biomarkers, driver mutations, oncogenic pathways, and therapeutic targets. Integrating multi-omics data, network analysis, and advanced ML will be pivotal in future biomarker discovery and patient prognosis prediction.
引用
收藏
页数:23
相关论文
共 89 条
[81]   SCANPY: large-scale single-cell gene expression data analysis [J].
Wolf, F. Alexander ;
Angerer, Philipp ;
Theis, Fabian J. .
GENOME BIOLOGY, 2018, 19
[82]   Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation [J].
Wong, Tzu-Tsung .
PATTERN RECOGNITION, 2015, 48 (09) :2839-2846
[83]   clusterProfiler 4.0: A universal enrichment tool for interpreting omics data [J].
Wu, Tianzhi ;
Hu, Erqiang ;
Xu, Shuangbin ;
Chen, Meijun ;
Guo, Pingfan ;
Dai, Zehan ;
Feng, Tingze ;
Zhou, Lang ;
Tang, Wenli ;
Zhan, Li ;
Fu, Xiaocong ;
Liu, Shanshan ;
Bo, Xiaochen ;
Yu, Guangchuang .
INNOVATION, 2021, 2 (03)
[84]   Data Privacy in Healthcare: In the Era of Artificial Intelligence [J].
Yadav, Neel ;
Pandey, Saumya ;
Gupta, Amit ;
Dudani, Pankhuri ;
Gupta, Somesh ;
Rangarajan, Krithika .
INDIAN DERMATOLOGY ONLINE JOURNAL, 2023, 14 (06) :788-792
[85]   Learning distributed representations of RNA and protein sequences and its application for predicting lncRNA-protein interactions [J].
Yi, Hai-Cheng ;
You, Zhu-Hong ;
Cheng, Li ;
Zhou, Xi ;
Jiang, Tong-Hai ;
Li, Xiao ;
Wang, Yan-Bin .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 :20-26
[86]   The integration of systemic and tumor PD-L1 as a predictive biomarker of clinical outcomes in patients with advanced NSCLC treated with PD-(L)1blockade agents [J].
Zamora Atenza, Carlos ;
Anguera, Georgia ;
Riudavets Melia, Mariona ;
Alserawan De Lamo, Leticia ;
Sullivan, Ivana ;
Barba Joaquin, Andres ;
Serra Lopez, Jorgina ;
Angels Ortiz, M. ;
Mulet, Maria ;
Vidal, Silvia ;
Majem, Margarita .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2022, 71 (08) :1823-1835
[87]   WebGestalt: an integrated system for exploring gene sets in various biological contexts [J].
Zhang, B ;
Kirov, S ;
Snoddy, J .
NUCLEIC ACIDS RESEARCH, 2005, 33 :W741-W748
[88]   The integration of single-cell sequencing, TCGA, and GEO data analysis revealed that PRRT3-AS1 is a biomarker and therapeutic target of SKCM [J].
Zhang, Wancong ;
Xie, Xuqi ;
Huang, Zijian ;
Zhong, Xiaoping ;
Liu, Yang ;
Cheong, Kit-Leong ;
Zhou, Jianda ;
Tang, Shijie .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[89]  
Zhou J, 2015, NAT METHODS, V12, P931, DOI [10.1038/nmeth.3547, 10.1038/NMETH.3547]