A Comprehensive Review of Bioinformatics Tools for Genomic Biomarker Discovery Driving Precision Oncology

被引:5
作者
Clark, Alexis J. [1 ]
Lillard Jr, James W. [1 ]
机构
[1] Morehouse Sch Med, Dept Microbiol Biochem & Immunol, Atlanta, GA 30310 USA
关键词
oncology; bioinformatics; biomarker discovery; predictive algorithms; RNA-Seq; ARTIFICIAL-INTELLIGENCE; NETWORK ANALYSIS; DNA; PATHWAY; SEQUENCE; RNA; INFORMATION; ALGORITHMS; WEBGESTALT; ALIGNMENT;
D O I
10.3390/genes15081036
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The rapid advancement of high-throughput technologies, particularly next-generation sequencing (NGS), has revolutionized cancer research by enabling the investigation of genetic variations such as SNPs, copy number variations, gene expression, and protein levels. These technologies have elevated the significance of precision oncology, creating a demand for biomarker identification and validation. This review explores the complex interplay of oncology, cancer biology, and bioinformatics tools, highlighting the challenges in statistical learning, experimental validation, data processing, and quality control that underpin this transformative field. This review outlines the methodologies and applications of bioinformatics tools in cancer genomics research, encompassing tools for data structuring, pathway analysis, network analysis, tools for analyzing biomarker signatures, somatic variant interpretation, genomic data analysis, and visualization tools. Open-source tools and repositories like The Cancer Genome Atlas (TCGA), Genomic Data Commons (GDC), cBioPortal, UCSC Genome Browser, Array Express, and Gene Expression Omnibus (GEO) have emerged to streamline cancer omics data analysis. Bioinformatics has significantly impacted cancer research, uncovering novel biomarkers, driver mutations, oncogenic pathways, and therapeutic targets. Integrating multi-omics data, network analysis, and advanced ML will be pivotal in future biomarker discovery and patient prognosis prediction.
引用
收藏
页数:23
相关论文
共 89 条
  • [1] Abadi M., 2016, arXiv
  • [2] Industry welcomes Genetic Information Nondiscrimination Act
    Allison, Malorye
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (06) : 596 - 597
  • [3] Andrews S., 2010, FastQC A: Quality control tool for high throughput sequence data
  • [4] [Anonymous], 2023, Qiagen Ingenuity Pathway Analysis (QIAGEN IPA)
  • [5] Applied Biosystems, 2008, SOLiD System Brochure
  • [6] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [7] How to achieve trustworthy artificial intelligence for health
    Baeroe, Kristine
    Miyata-Sturm, Ainar
    Henden, Edmund
    [J]. BULLETIN OF THE WORLD HEALTH ORGANIZATION, 2020, 98 (04) : 257 - 262
  • [8] A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer
    Bassez, Ayse
    Vos, Hanne
    Van Dyck, Laurien
    Floris, Giuseppe
    Arijs, Ingrid
    Desmedt, Christine
    Boeckx, Bram
    Vanden Bempt, Marlies
    Nevelsteen, Ines
    Lambein, Kathleen
    Punie, Kevin
    Neven, Patrick
    Garg, Abhishek D.
    Wildiers, Hans
    Qian, Junbin
    Smeets, Ann
    Lambrechts, Diether
    [J]. NATURE MEDICINE, 2021, 27 (05) : 820 - +
  • [9] Trimmomatic: a flexible trimmer for Illumina sequence data
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BIOINFORMATICS, 2014, 30 (15) : 2114 - 2120
  • [10] Buolamwini Joy, 2018, C FAIRN ACC TRANSP, V81, P77, DOI DOI 10.2147/OTT.S126905