DIFFUSION PROCESSES: ENTROPY, GIBBS STATES AND THE CONTINUOUS TIME RUELLE OPERATOR

被引:0
作者
Lopes, Artur O. [1 ]
Mueller, Gustavo [1 ]
Neumann, Adriana [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Matemat & Estat, Porto Alegre, RS 90010, Brazil
来源
JOURNAL OF DYNAMICS AND GAMES | 2025年 / 12卷 / 02期
关键词
Geometric Laplacian; diffusions; entropy; Gibbs states; pressure; continuous-time Ruelle operator; eigenfunction; eigenvalue; Feynman-Kac formula; thermodynamic formalism; SYSTEMS;
D O I
10.3934/jdg.2024015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a Riemannian compact manifold M, the associated Laplacian Delta and the corresponding Brownian motion X-t, t >= 0. Given a Lipschitz function V : M -> R we consider the operator 1/2 Delta + V, which acts on differentiable functions f : M -> R via the expression 1/2 Delta f(x) + V (x)f(x), for all x is an element of M. Denote by P-t(V), t >= 0, the semigroup acting on functions f : M -> R given by P-t(V)(f)(x) := E-x [e(integral t0V(Xr) dr)f(X-t)]. We will derive results that show that this semigroup is a continuous-time version of the discrete-time Ruelle operator. Consider the positive differentiable eigenfunction F : M -> R associated with the main eigenvalue lambda, for the semigroup P-t(V), t >= 0. From the function F, in a procedure similar to the one used in discrete-time Thermodynamic Formalism, we can associate by way of a coboundary procedure, a certain stationary Markov semigroup. We show that the probability on the Skorohod space obtained from this new stationary Markov semigroup meets the requirements to be called stationary Gibbs state associated with the potential V. We define entropy, pressure, and the continuous-time Ruelle operator. Also, we present a variational principle of pressure for such a setting.
引用
收藏
页码:105 / 117
页数:13
相关论文
共 26 条
  • [1] A variational principle for the specific entropy for symbolic systems with uncountable alphabets
    Aguiar, D.
    Cioletti, L.
    Ruviaro, R.
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (17-18) : 2506 - 2515
  • [2] [Anonymous], 2005, Functional analysis for probability and stochastic processes
  • [3] Bakry D., 2014, Analysis and geometry of Markov diffusion operators, V103
  • [4] Baraviera A., 2010, Sao Paulo Journal of Mathematical Sciences, V4, P1
  • [5] Del Moral P., 2004, PROB APPL S, DOI DOI 10.1016/S0169-5347(03)00216-7
  • [6] VARIATIONAL FORMULA FOR PRINCIPAL EIGENVALUE FOR OPERATORS WITH MAXIMUM PRINCIPLE
    DONSKER, MD
    VARADHAN, SRS
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (03) : 780 - 783
  • [7] Dumitrescu Monica E., 1988, Casopis Pro Pestovani Matematiky, V113, P429, DOI DOI 10.21136/CPM.1988.118348
  • [8] Egorov Yu., 1998, Foundations of the Classical Theory of Partial Differential Equations
  • [9] ETHIER S. N., 2005, Wiley Ser. Probab. Stat.
  • [10] Georgii H. O., 1998, Gibbs Measures and Phase Transitions