Role of artificial intelligence in critical care nutrition support and research

被引:4
作者
Kittrell, Hannah D. [1 ,2 ,3 ]
Shaikh, Ahmed [4 ]
Adintori, Peter A. [5 ,6 ]
Mccarthy, Paul [7 ]
Kohli-Seth, Roopa [4 ]
Nadkarni, Girish N. [1 ,2 ,3 ,8 ]
Sakhuja, Ankit [1 ,3 ,4 ]
机构
[1] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY USA
[2] Icahn Sch Med Mt Sinai, Mt Sinai Clin Intelligence Ctr, New York, NY USA
[3] Icahn Sch Med Mt Sinai, Div Data Driven & Digital Med, New York, NY USA
[4] Icahn Sch Med Mt Sinai, Inst Crit Care Med, New York, NY USA
[5] Mem Sloan Kettering Canc Ctr, Food & Nutr Serv Dept, New York, NY USA
[6] New York Univ Steinhardt, Program Rehabil Sci, New York, NY USA
[7] West Virginia Univ, Dept Cardiovasc & Thorac Surg, Div Cardiovasc Crit Care, Morgantown, WV USA
[8] Icahn Sch Med Mt Sinai, Dept Med, Div Nephrol, New York, NY USA
关键词
artificial intelligence; critical care; machine learning; malnutrition; nutrition; ENTERAL NUTRITION; UNIT PATIENTS; PREDICT; TACHYCARDIA; IMPROVEMENT; MODEL; ICU;
D O I
10.1002/ncp.11194
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Nutrition plays a key role in the comprehensive care of critically ill patients. Determining optimal nutrition strategy, however, remains a subject of intense debate. Artificial intelligence (AI) applications are becoming increasingly common in medicine, and specifically in critical care, driven by the data-rich environment of intensive care units. In this review, we will examine the evidence regarding the application of AI in critical care nutrition. As of now, the use of AI in critical care nutrition is relatively limited, with its primary emphasis on malnutrition screening and tolerance of enteral nutrition. Despite the current scarcity of evidence, the potential for AI for more personalized nutrition management for critically ill patients is substantial. This stems from the ability of AI to integrate multiple data streams reflecting patients' changing needs while addressing inherent heterogeneity. The application of AI in critical care nutrition holds promise for optimizing patient outcomes through tailored and adaptive nutrition interventions. A successful implementation of AI, however, necessitates a multidisciplinary approach, coupled with careful consideration of challenges related to data management, financial aspects, and patient privacy.
引用
收藏
页码:1069 / 1080
页数:12
相关论文
共 95 条
[11]   Utilization of Deep Learning for Subphenotype Identification in Sepsis-Associated Acute Kidney Injury [J].
Chaudhary, Kumardeep ;
Vaid, Akhil ;
Duffy, Aine ;
Paranjpe, Ishan ;
Jaladanki, Suraj ;
Paranjpe, Manish ;
Johnson, Kipp ;
Gokhale, Avantee ;
Pattharanitima, Pattharawin ;
Chauhan, Kinsuk ;
O'Hagan, Ross ;
Van Vleck, Tielman ;
Coca, Steven G. ;
Cooper, Richard ;
Glicksberg, Benjamin ;
Bottinger, Erwin P. ;
Chan, Lili ;
Nadkarni, Girish N. .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2020, 15 (11) :1557-1565
[12]   Development and validation of a predictive model for diarrhea in ICU patients with enteral nutrition [J].
Chen, Qiuchan ;
Chen, Yuzhen ;
Wang, Haiqin ;
Huang, Jing ;
Ou, Xiuli ;
Hu, Jieshan ;
Yao, Xiaohong ;
Guan, Lijun .
JOURNAL OF PARENTERAL AND ENTERAL NUTRITION, 2023, 47 (04) :563-571
[13]   Explainable machine learning model to predict refeeding hypophosphatemia [J].
Choi, Tae Yang ;
Chang, Min-Yung ;
Heo, Sungtaik ;
Jang, Ji Young .
CLINICAL NUTRITION ESPEN, 2021, 45 :213-219
[14]  
Colaço Aline Daiane, 2014, Rev. esc. enferm. USP, V48, P844, DOI 10.1590/S0080-6234201400005000010
[15]  
Dasaradharami Reddy K, 2023, Comput Intell Neurosci, V2023, P8393990, DOI 10.1155/2023/8393990
[16]  
Delua J., 2021, IBM Blog
[17]   Deep learning: from speech recognition to language and multimodal processing [J].
Deng, Li .
APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2016, 5
[18]   Early Parenteral Nutrition in Critically Ill Patients With Short-term Relative Contraindications to Early Enteral Nutrition A Randomized Controlled Trial [J].
Doig, Gordon S. ;
Simpson, Fiona ;
Sweetman, Elizabeth A. ;
Finfer, Simon R. ;
Cooper, D. Jamie ;
Heighes, Philippa T. ;
Davies, Andrew R. ;
O'Leary, Michael ;
Solano, Tom ;
Peake, Sandra .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2013, 309 (20) :2130-2138
[19]   Early versus late enteral nutrition in critically ill patients receiving vasopressor support [J].
Dorken Gallastegi, Ander ;
Gebran, Anthony ;
Gaitanidis, Apostolos ;
Naar, Leon ;
Hwabejire, John O. ;
Parks, Jonathan ;
Lee, Jarone ;
Kaafarani, Haytham M. A. ;
Velmahos, George C. ;
Mendoza, April E. .
JOURNAL OF PARENTERAL AND ENTERAL NUTRITION, 2022, 46 (01) :130-140
[20]   Improving Nutrition in Mechanically Ventilated Patients [J].
Ellis, Corinne Schultz .
JOURNAL OF NEUROSCIENCE NURSING, 2015, 47 (05) :263-270