Role of artificial intelligence in critical care nutrition support and research

被引:3
作者
Kittrell, Hannah D. [1 ,2 ,3 ]
Shaikh, Ahmed [4 ]
Adintori, Peter A. [5 ,6 ]
Mccarthy, Paul [7 ]
Kohli-Seth, Roopa [4 ]
Nadkarni, Girish N. [1 ,2 ,3 ,8 ]
Sakhuja, Ankit [1 ,3 ,4 ]
机构
[1] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY USA
[2] Icahn Sch Med Mt Sinai, Mt Sinai Clin Intelligence Ctr, New York, NY USA
[3] Icahn Sch Med Mt Sinai, Div Data Driven & Digital Med, New York, NY USA
[4] Icahn Sch Med Mt Sinai, Inst Crit Care Med, New York, NY USA
[5] Mem Sloan Kettering Canc Ctr, Food & Nutr Serv Dept, New York, NY USA
[6] New York Univ Steinhardt, Program Rehabil Sci, New York, NY USA
[7] West Virginia Univ, Dept Cardiovasc & Thorac Surg, Div Cardiovasc Crit Care, Morgantown, WV USA
[8] Icahn Sch Med Mt Sinai, Dept Med, Div Nephrol, New York, NY USA
关键词
artificial intelligence; critical care; machine learning; malnutrition; nutrition; ENTERAL NUTRITION; UNIT PATIENTS; PREDICT; TACHYCARDIA; IMPROVEMENT; MODEL; ICU;
D O I
10.1002/ncp.11194
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Nutrition plays a key role in the comprehensive care of critically ill patients. Determining optimal nutrition strategy, however, remains a subject of intense debate. Artificial intelligence (AI) applications are becoming increasingly common in medicine, and specifically in critical care, driven by the data-rich environment of intensive care units. In this review, we will examine the evidence regarding the application of AI in critical care nutrition. As of now, the use of AI in critical care nutrition is relatively limited, with its primary emphasis on malnutrition screening and tolerance of enteral nutrition. Despite the current scarcity of evidence, the potential for AI for more personalized nutrition management for critically ill patients is substantial. This stems from the ability of AI to integrate multiple data streams reflecting patients' changing needs while addressing inherent heterogeneity. The application of AI in critical care nutrition holds promise for optimizing patient outcomes through tailored and adaptive nutrition interventions. A successful implementation of AI, however, necessitates a multidisciplinary approach, coupled with careful consideration of challenges related to data management, financial aspects, and patient privacy.
引用
收藏
页码:1069 / 1080
页数:12
相关论文
共 95 条
[1]  
Aggarwal C. C, 2018, Neural networks and deep learning, DOI [DOI 10.1007/978-3-319-94463-0, 10.1007/978-3-319-94463-0]
[2]   The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study [J].
Alberda, Cathy ;
Gramlich, Leah ;
Jones, Naomi ;
Jeejeebhoy, Khursheed ;
Day, Andrew G. ;
Dhaliwal, Rupinder ;
Heyland, Daren K. .
INTENSIVE CARE MEDICINE, 2009, 35 (10) :1728-1737
[3]  
[Anonymous], IBM RES
[4]  
[Anonymous], IBM DEVELOPER
[5]  
[Anonymous], Google cloud
[6]  
[Anonymous], What is Artificial Intelligence in Medicine?
[7]   Implementing a Machine Learning Screening Tool for Malnutrition: Insights From Qualitative Research Applicable to Other Machine Learning-Based Clinical Decision Support Systems [J].
Besculides, Melanie ;
Mazumdar, Madhu ;
Phlegar, Sydney ;
Freeman, Robert ;
Wilson, Sara ;
Joshi, Himanshu ;
Kia, Arash ;
Gorbenko, Ksenia .
JMIR FORMATIVE RESEARCH, 2023, 7
[8]   Continuous Monitoring in an Inpatient Medical-Surgical Unit: A Controlled Clinical Trial [J].
Brown, Harvey ;
Terrence, Jamie ;
Vasquez, Patricia ;
Bates, David W. ;
Zimlichman, Eyal .
AMERICAN JOURNAL OF MEDICINE, 2014, 127 (03) :226-232
[9]   Early versus Late Parenteral Nutrition in Critically Ill Adults [J].
Casaer, Michael P. ;
Mesotten, Dieter ;
Hermans, Greet ;
Wouters, Pieter J. ;
Schetz, Miet ;
Meyfroidt, Geert ;
Van Cromphaut, Sophie ;
Ingels, Catherine ;
Meersseman, Philippe ;
Muller, Jan ;
Vlasselaers, Dirk ;
Debaveye, Yves ;
Desmet, Lars ;
Dubois, Jasperina ;
Van Assche, Aime ;
Vanderheyden, Simon ;
Wilmer, Alexander ;
Van den Berghe, Greet .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (06) :506-517
[10]   Relevance of AND-ASPEN criteria of malnutrition to predict hospital mortality in critically ill patients: A prospective study [J].
Ceniccola, G. D. ;
Holanda, T. P. ;
Pequeno, R. S. F. ;
Mendonca, V. S. ;
Oliveira, A. B. M. ;
Carvalho, L. S. F. ;
de Brito-Ashurst, I. ;
Araujo, W. M. C. .
JOURNAL OF CRITICAL CARE, 2018, 44 :398-403