A Fast Algorithm for the Eigenvalue Bounds of a Class of Symmetric Tridiagonal Interval Matrices

被引:0
作者
Yuan, Quan [1 ]
Yang, Zhixin [1 ]
机构
[1] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
来源
APPLIEDMATH | 2023年 / 3卷 / 01期
关键词
eigenvalue bounds; symmetric tridiagonal matrices; interval matrices; interval analysis; ITERATION; STANDARD;
D O I
10.3390/appliedmath3010007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eigenvalue bounds of interval matrices are often required in some mechanical and engineering fields. In this paper, we improve the theoretical results presented in a previous paper "A property of eigenvalue bounds for a class of symmetric tridiagonal interval matrices" and provide a fast algorithm to find the upper and lower bounds of the interval eigenvalues of a class of symmetric tridiagonal interval matrices.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 22 条
  • [1] Alefeld G., 1983, Introduction to Interval Computations
  • [2] Deif A., 1991, Advanced Matrix Theory for Scientists and Engineers, V2nd ed., P262
  • [3] INTERVAL-ANALYSIS OF VIBRATING SYSTEMS
    DIMAROGONAS, AD
    [J]. JOURNAL OF SOUND AND VIBRATION, 1995, 183 (04) : 739 - 749
  • [4] [龚文飞 Gong Wenfei], 2010, [电子测量与仪器学报, Journal of Electronic Measurement and Instrument], V24, P899, DOI 10.3724/SP.J.1187.2010.00899
  • [5] Hlad¡k M, 2018, Arxiv, DOI arXiv:1704.03670
  • [6] Extremal eigenvalue intervals of symmetric tridiagonal interval matrices
    Jian, Yuan
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2017, 24 (02)
  • [7] Jiang E., 1984, The Computation of Symmetric Matrices
  • [8] Jiang E., 1999, Num. Math. J. Chin. Univ, V12, P305
  • [9] KOYLUOGLU HU, 1995, J ENG MECH-ASCE, V121, P1149
  • [10] Computing eigenvalue bounds of structures with uncertain-but-non-random parameters by a method based on perturbation theory
    Leng, Huinan
    He, Zhiqing
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2007, 23 (11): : 973 - 982