On the stability of constant higher order mean curvature hypersurfaces in a Riemannian manifold

被引:2
作者
Elbert, Maria Fernanda [1 ]
Nelli, Barbara [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Rio De Janeiro, Brazil
[2] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Laquila, Italy
关键词
eigenvalues; elliptic operator; r-mean curvature; stability; ROTATION HYPERSURFACES; X R; SURFACES; THEOREM;
D O I
10.1002/mana.202400159
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a notion of stability for constant k$k$-mean curvature hypersurfaces in a general Riemannian manifold and we give some applications. When the ambient manifold is a Space Form, our notion coincides with the known one, given by means of the variational problem.
引用
收藏
页码:4031 / 4043
页数:13
相关论文
共 32 条
[1]  
Alencar H, 2003, J REINE ANGEW MATH, V554, P201
[2]  
Alíias LJ, 2007, P AM MATH SOC, V135, P3685
[3]  
Alías LJ, 2013, T AM MATH SOC, V365, P591
[4]   Local existence of dynamical and trapping horizons - art. no. 111101 [J].
Andersson, L ;
Mars, M ;
Simon, W .
PHYSICAL REVIEW LETTERS, 2005, 95 (11)
[5]  
Andersson L, 2011, CONTEMP MATH, V554, P13
[6]  
Andersson L, 2010, J DIFFER GEOM, V84, P231, DOI 10.4310/jdg/1274707313
[7]   STABILITY OF HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN RIEMANNIAN-MANIFOLDS [J].
BARBOSA, JL ;
DOCARMO, M ;
ESCHENBURG, J .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) :123-138
[8]   STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE [J].
BARBOSA, JL ;
DOCARMO, M .
MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) :339-353
[9]  
Barbosa JLM, 1997, ANN GLOB ANAL GEOM, V15, P277
[10]   Fundamental tone estimates for elliptic operators in divergence form and geometric applications [J].
Bessa, Gregorio P. ;
Jorge, Luquesio P. ;
Lima, Barnabe P. ;
Montenegro, Jose F. .
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2006, 78 (03) :391-404