Convergence of Runge-Kutta-based convolution quadrature for semilinear fractional differential equations

被引:0
作者
Zhao, Jingjun [1 ]
Kong, Jiameng [1 ]
Xu, Yang [1 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional differential equation; Runge-Kutta method; convergence; Caputo derivative; convolution quadrature; DIFFUSION; APPROXIMATION;
D O I
10.1080/00207160.2024.2395977
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For solving the semilinear fractional differential equations with the nonsmooth force term, we construct a class of Runge-Kutta-based convolution quadrature. Moreover, we analyse the convergence of the proposed scheme. In addition, we employ the fast Runge-Kutta approximation to reduce the calculation cost. Finally, we give some numerical experiments to verify the theoretical results.
引用
收藏
页码:1326 / 1340
页数:15
相关论文
共 25 条