The morphologic dependence of MnO2 electrodes in capacitive deionization process

被引:18
作者
Chen, Yi [1 ,2 ,3 ]
Pu, Shengyan [1 ,3 ]
Zhang, Zhe [2 ,4 ]
Gao, Ming [2 ]
Deng, Wenyang [2 ,5 ]
Ao, Tianqi [2 ]
Chen, Wenqing [2 ]
机构
[1] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Prot, Chengdu 610059, Peoples R China
[2] Sichuan Univ, Coll Architecture & Environm, Chengdu 610065, Peoples R China
[3] Chengdu Univ Technol, Coll Ecol & Environm, Chengdu 610059, Peoples R China
[4] Xijing Univ, Technol Inst Mat & Energy Sci, Xian 710123, Peoples R China
[5] China Three Gorges Construct Engn Corp, Chengdu 610041, Peoples R China
关键词
Capacitive deionization; MnO2; Morphology control; Surface-interface properties; DOUBLE-LAYERS; CARBON; NANOSHEETS; CATALYSTS;
D O I
10.1016/j.cej.2024.155276
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Manganese dioxide (MnO2) materials are one of promising cathode candidates for capacitive deionization (CDI) applications, with their morphology significantly impacting the performance of the electrode material itself. Therefore, this study systematically investigates the structure-performance relationships and the micro-interface ion storage mechanisms of four morphologies of MnO2 (1D nanorods (NNMO), nanowires (NWMO), 3D microspheres (MMO), and hollow urchin-like spheres (HUMO)) in relation to their capacitive deionization performance with typical heavy metal ions (Cd2+) through experimental and theoretical calculations. In terms of pore morphology, capacitance significantly increases with increasing surface curvature of materials, demonstrating a clear pore structure-dependent characteristic. NNMO, with the smallest pore size, has much lower surface capacitance (similar to 0.15 mu F cm(- 2)) than other materials (similar to 0.33 mu F cm(- 2)). As pore size increases, the capacitance distribution difference driven by pore structure size gradually disappears. Regarding surface and interface characteristics, high-energy crystal facets facilitate electron transfer ({310}>{200}approximate to{211}>{100}) and increase the proportion of surface active sites (Osur), thus promoting CDI absorption kinetics. During the capacitive deionization process, the pore structure (similar to 77 %) and surface-interface characteristics (similar to 23 %) exhibit highly coupled features and the driving force for interfacial ion storage among the four materials is in the order of HUMO>MMO>NWMO>NNMO. This work elucidates the morphology-dependent capacitive processes of MnO2 nanomaterials, enhancing the understanding of structure- electrochemical process at the nanoscale but also providing effective guidance for the design and development of practical, high-performance CDI electrode materials.
引用
收藏
页数:13
相关论文
共 56 条
[11]   Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy [J].
Forse, Alexander C. ;
Griffin, John M. ;
Merlet, Celine ;
Carretero-Gonzalez, Javier ;
Raji, Abdul-Rahman O. ;
Trease, Nicole M. ;
Grey, Clare P. .
NATURE ENERGY, 2017, 2 (03)
[12]   Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors [J].
Huang, Jingsong ;
Sumpter, Bobby G. ;
Meunier, Vincent ;
Yushin, Gleb ;
Portet, Cristelle ;
Gogotsi, Yury .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (08) :1525-1531
[13]   Hierarchical nanosheet-based MoS2/graphene nanobelts with high electrochemical energy storage performance [J].
Jia, Yulong ;
Wan, Hongqi ;
Chen, Lei ;
Zhou, Huidi ;
Chen, Jianmin .
JOURNAL OF POWER SOURCES, 2017, 354 :1-9
[14]   Facile Synthesis and Photocatalysis of Size-Distributed TiO2 Hollow Spheres Consisting of {116} Plane-Oriented Nanocrystallites [J].
Jiao, Yuzhu ;
Peng, Chengxin ;
Guo, Fangfang ;
Bao, Zhihao ;
Yang, Jinhu ;
Schmidt-Mende, Lukas ;
Dunbar, Ricky ;
Qin, Yao ;
Deng, Zifeng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (14) :6405-6409
[15]   The relationship between ionic-electronic coupling and transport in organic mixed conductors [J].
Keene, Scott T. ;
Rao, Akshay ;
Malliaras, George G. .
SCIENCE ADVANCES, 2023, 9 (35)
[16]   Electrode Materials for Desalination of Water via Capacitive Deionization [J].
Kumar, Sushil ;
Aldaqqa, Najat Maher ;
Alhseinat, Emad ;
Shetty, Dinesh .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (35)
[17]   Developing efficient, binder-free 3D porous Ti3C2Tx-MXene electrodes for enhanced capacitive deionization towards desalination [J].
Lei, Shuli ;
Yang, Tao ;
Tian, Chang ;
Yan, Tao ;
Li, Xuguang ;
Song, Wen ;
Liu, Wei ;
Yan, Liangguo ;
Zhao, Yanxia .
DESALINATION, 2024, 574
[18]   New Approach for Investigating Diffusion Kinetics Within Capacitive Deionization Electrodes Using Electrochemical Impedance Spectroscopy [J].
Lenz, Magdalena ;
Zabel, Jana ;
Franzreb, Matthias .
FRONTIERS IN MATERIALS, 2020, 7
[19]   Unveiling the structure-activity relationships of ofloxacin degradation by Co3O4-activated peroxymonosulfate: From microstructures to exposed facets [J].
Li, Bo ;
Xu, Huan-Yan ;
Liu, Yu-Long ;
Liu, Yue ;
Xu, Yan ;
Zhang, Si-Qun .
CHEMICAL ENGINEERING JOURNAL, 2023, 467
[20]   Molecular Insights into Curvature Effects on the Capacitance of Electrical Double Layers in Tricationic Ionic Liquids with Carbon Nanotube Electrodes [J].
Li, Dan -Dan ;
Li, Er-Chao ;
Ji, Xiang-Yu ;
Yang, Yan-Ru ;
Wang, Xiao-Dong ;
Feng, Guang .
LANGMUIR, 2023, 39 (01) :588-596