Big data in visual field testing for glaucoma

被引:1
作者
Pham, Alex T. [1 ]
Pan, Annabelle A. [1 ]
Yohannan, Jithin [1 ,2 ]
机构
[1] Johns Hopkins Univ, Wilmer Eye Inst, Sch Med, Baltimore, MD USA
[2] Johns Hopkins Univ, Malone Ctr Engn Healthcare, Baltimore, MD USA
关键词
Artificial intelligence; big data; data science; glaucoma; machine learning; visual field; OPEN-ANGLE GLAUCOMA; NERVE-FIBER LAYER; DIABETES-MELLITUS; INTRAOCULAR-PRESSURE; SITA STANDARD; OCT SCANS; PROGRESSION; FASTER; RATES; POPULATION;
D O I
10.4103/tjo.TJO-D-24-00059
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Recent technological advancements and the advent of ever-growing databases in health care have fueled the emergence of "big data" analytics. Big data has the potential to revolutionize health care, particularly ophthalmology, given the data-intensive nature of the medical specialty. As one of the leading causes of irreversible blindness worldwide, glaucoma is an ocular disease that receives significant interest for developing innovations in eye care. Among the most vital sources of data in glaucoma is visual field (VF) testing, which stands as a cornerstone for diagnosing and managing the disease. The expanding accessibility of large VF databases has led to a surge in studies investigating various applications of big data analytics in glaucoma. In this study, we review the use of big data for evaluating the reliability of VF tests, gaining insights into real-world clinical practices and outcomes, understanding new disease associations and risk factors, characterizing the patterns of VF loss, defining the structure-function relationship of glaucoma, enhancing early diagnosis or earlier detection of progression, informing clinical decisions, and improving clinical trials. Equally important, we discuss current challenges in big data analytics and future directions for improvement.
引用
收藏
页码:289 / +
页数:17
相关论文
共 99 条
  • [81] TIELSCH JM, 1995, OPHTHALMOLOGY, V102, P48
  • [82] The Effect of Achieving Target Intraocular Pressure on Visual Field Worsening
    Villasana, Gabriel A.
    Bradley, Chris
    Ramulu, Pradeep
    Unberath, Mathias
    Yohannan, Jithin
    [J]. OPHTHALMOLOGY, 2022, 129 (01) : 35 - 44
  • [83] An Artificial Intelligence Approach to Assess Spatial Patterns of Retinal Nerve Fiber Layer Thickness Maps in Glaucoma
    Wang, Mengyu
    Shen, Lucy Q.
    Pasquale, Louis R.
    Wang, Hui
    Li, Dian
    Choi, Eun Young
    Yousefi, Siamak
    Bex, Peter J.
    Elze, Tobias
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (09): : 1 - 12
  • [84] Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma
    Wang, Mengyu
    Shen, Lucy Q.
    Pasquale, Louis R.
    Boland, Michael, V
    Wellik, Sarah R.
    De Moraes, Carlos Gustavo
    Myers, Jonathan S.
    Nguyen, Thao D.
    Ritch, Robert
    Ramulu, Pradeep
    Wang, Hui
    Tichelaar, Jorryt
    Li, Dian
    Bex, Peter J.
    Elze, Tobias
    [J]. OPHTHALMOLOGY, 2020, 127 (06) : 731 - 738
  • [85] Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence
    Wang, Mengyu
    Tichelaar, Jorryt
    Pasquale, Louis R.
    Shen, Lucy Q.
    Boland, Michael V.
    Wellik, Sarah R.
    De Moraes, Carlos Gustavo
    Myers, Jonathan S.
    Ramulu, Pradeep
    Kwon, MiYoung
    Saeedi, Osamah J.
    Wang, Hui
    Baniasadi, Neda
    Li, Dian
    Bex, Peter J.
    Elze, Tobias
    [J]. JAMA OPHTHALMOLOGY, 2020, 138 (02) : 190 - 198
  • [86] An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis
    Wang, Mengyu
    Shen, Lucy Q.
    Pasquale, Louis R.
    Petrakos, Paul
    Formica, Sydney
    Boland, Michael, V
    Wellik, Sarah R.
    De Moraes, Carlos Gustavo
    Myers, Jonathan S.
    Saeedi, Osamah
    Wang, Hui
    Baniasadi, Neda
    Li, Dian
    Tichelaar, Jorryt
    Bex, Peter J.
    Elze, Tobias
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (01) : 365 - 375
  • [87] Opportunities for Improving Glaucoma Clinical Trials via Deep Learning-Based Identification of Patients with Low Visual Field Variability
    Wang, Ruolin
    Bradley, Chris
    Herbert, Patrick
    Hou, Kaihua
    Hager, Gregory D.
    Breininger, Katharina
    Unberath, Mathias
    Ramulu, Pradeep
    Yohannan, Jithin
    [J]. OPHTHALMOLOGY GLAUCOMA, 2024, 7 (03): : 222 - 231
  • [88] Deep learning-based identification of eyes at risk for glaucoma surgery
    Wang, Ruolin
    Bradley, Chris
    Herbert, Patrick
    Hou, Kaihua
    Ramulu, Pradeep
    Breininger, Katharina
    Unberath, Mathias
    Yohannan, Jithin
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [89] Deep Learning Approaches for Predicting Glaucoma Progression Using Electronic Health Records and Natural Language Processing
    Wang, Sophia Y.
    Tseng, Benjamin
    Hernandez-Boussard, Tina
    [J]. OPHTHALMOLOGY SCIENCE, 2022, 2 (02):
  • [90] Sample Size Requirements of Glaucoma Clinical Trials When Using Combined Optical Coherence Tomography and Visual Field Endpoints
    Wu, Zhichao
    Medeiros, Felipe A.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1) : 18886