Steel surface defect detection algorithm in complex background scenarios

被引:14
|
作者
Zhao, Baiting [1 ]
Chen, Yuran [1 ]
Jia, Xiaofen [2 ,3 ]
Ma, Tianbing [3 ]
机构
[1] Anhui Univ Sci & Technol, Sch Elect & Informat Engn, Huainan 232001, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Artificial Intelligence, Huainan 232001, Peoples R China
[3] Anhui Univ Sci & Technol, State Key Lab Min Response & Disaster Prevent & Co, Huainan 232001, Peoples R China
基金
中国国家自然科学基金;
关键词
Defect detection; YOLOv8; Deep learning; Multi-scale feature extraction;
D O I
10.1016/j.measurement.2024.115189
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Detecting surface defects on steel poses a significant challenge attributed to factors such as poor contrast, diverse defect types, complex background clutter, and noise interference present in images of steel surface defects. Current detection techniques face challenges in quickly and accurately identifying defects within complex backgrounds. To address the deployment of high -precision detection models on edge devices with limited resources, particularly for identifying steel surface defects, this study introduces a Multi -Scale Adaptive Fusion (MSAF) YOLOv8n defect detection algorithm designed for complex backgrounds. This algorithm effectively balances detection speed and accuracy. Firstly, a Multi -Scale Adaptive Fusion Block (MS -AFB) is proposed for the extraction of multi -scale features. Secondly, a Dynamic Coordinate Attention Ghostconv Space Pooling Pyramidfast Cross -stage Partial Convolutional (DCA-GSPPFCSPC) is devised to significantly improve detection accuracy. Furthermore, the detection head has been redesigned utilizing Lightweight Multi -scale Convolutional (LMSC) approach, and an Adaptive Pyramid Receptive Field Block (AP-RFB) has been introduced to improve the receptive field efficiently. Meanwhile, Normalized Weighted Distance (NWD) and Weighted Intersection over Union (WIoU) are employed as the boundary box loss functions, serving as substitutes for Complete Intersection over Union (CIoU) loss function with a ratio of 2:8. The experimental results obtained from the improved Northeastern University Defect Dataset (NEU-DET) dataset demonstrate that MSAF-YOLOv8n model, despite having 40.4 % of the parameters and 28.8 % of Floating Point Operations (FLOPs) of YOLOv8s, achieves a mAP@.5 that is 0.9 % higher than that of YOLOv8s. Additionally, MSAF-YOLOv8n demonstrates robust generalization capabilities in Pascal VOC2007, self -constructed datasets, and various other datasets. Subsequently, the model is implemented on embedded systems, namely Jeston TX2 NX and Orange Pi 5 +, both of which demonstrate real-time detection capabilities.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Steel Surface Defect Detection Method Based on Improved YOLOX
    Li, Chengfei
    Xu, Ao
    Zhang, Qibo
    Cai, Yufei
    IEEE ACCESS, 2024, 12 : 37643 - 37652
  • [42] A steel surface defect detection method based on improved RetinaNet
    Yang, Zhanglin
    Liu, Yu
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [43] Detection and Recognition of Steel Ball Surface Defect Based on MATLAB
    Lin, Yongzhi
    Liu, Xianli
    Han, Haiying
    Wang, Yiwen
    Wang, Peng
    ADVANCES IN GRINDING AND ABRASIVE TECHNOLOGY XV, 2009, 416 : 603 - 608
  • [44] Steel Surface Defect Detection Method Based on Improved YOLOv9 Network
    Zou, Jialin
    Wang, Hongcheng
    IEEE ACCESS, 2024, 12 : 124160 - 124170
  • [45] Surface Defect Detection of Rolled Steel Based on Lightweight Model
    Zhou, Shunyong
    Zeng, Yalan
    Li, Sicheng
    Zhu, Hao
    Liu, Xue
    Zhang, Xin
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [46] Cascading Convolutional Neural Network for Steel Surface Defect Detection
    Lin, Chih-Yang
    Chen, Cheng-Hsun
    Yang, Ching-Yuan
    Akhyar, Fityanul
    Hsu, Chao-Yung
    Ng, Hui-Fuang
    ADVANCES IN ARTIFICIAL INTELLIGENCE, SOFTWARE AND SYSTEMS ENGINEERING, 2020, 965 : 202 - 212
  • [47] Feature Enhancement and Metric Optimization for Defect Detection on Steel Surface
    Chen, Junying
    Huang, Hantao
    Li, Zhaoyang
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (24)
  • [48] Insulator defect detection in complex scenarios based on cascaded networks with lightweight attention mechanism
    Yang, Ning
    Li, Xiang
    Jing, Hongyuan
    Shang, Xinna
    Shen, Ping
    Chen, Aidong
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2024, 17 (04) : 2123 - 2136
  • [49] An Improved YOLOv7-Tiny-Based Algorithm for Wafer Surface Defect Detection
    Li, Mengyun
    Wang, Xueying
    Zhang, Hongtao
    Hu, Xiaofeng
    IEEE ACCESS, 2025, 13 : 10724 - 10734
  • [50] Research on strip surface defect detection based on improved YOLOv5 algorithm
    Lv, Shuaishuai
    Tao, Chuanzhen
    Hao, Zhuangzhuang
    Ni, Hongjun
    Hou, Zhengjie
    Li, Xiaoyuan
    Gu, Hai
    Shi, Weidong
    Chen, Linfei
    IRONMAKING & STEELMAKING, 2024, 51 (10) : 1046 - 1064