Bifurcation for indefinite-weighted p-Laplacian problems with slightly subcritical nonlinearity

被引:1
作者
Cuesta, Mabel [1 ]
Pardo, Rosa [2 ]
机构
[1] Univ Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais, France
[2] Univ Complutense Madrid, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
关键词
bifurcation to positive solutions; changing sign weight; Orlicz spaces; p-Laplacian; slightly subcritical nonlinearity; STRONG MAXIMUM PRINCIPLE; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; REGULARITY;
D O I
10.1002/mana.202400184
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a superlinear elliptic boundary value problem involving the p-Laplacian operator, with changing sign weights. The problem has positive solutions bifurcating from the trivial solution set at the two principal eigenvalues of the corresponding linear weighted boundary value problem. Drabek's bifurcation result applies when the nonlinearity is of power growth. We extend Drabek's bifurcation result to slightly subcritical nonlinearities. Compactness in this setting is a delicate issue obtained via Orlicz spaces.
引用
收藏
页码:3982 / 4002
页数:21
相关论文
共 38 条
[1]  
Adams R.A., 1975, Sobolev spaces, V65
[2]   ON SEMILINEAR ELLIPTIC-EQUATIONS WITH INDEFINITE NONLINEARITIES [J].
ALAMA, S ;
TARANTELLO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (04) :439-475
[3]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[4]  
Berestycki H., 1995, NODEA-NONLINEAR DIFF, V2, P553, DOI DOI 10.1007/BF01210623
[5]   On subhomogeneous indefinite p-Laplace equations in the supercritical spectral interval [J].
Bobkov, Vladimir ;
Tanaka, Mieko .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (01)
[6]  
Boron L. F., 1961, CONVEX FUNCTIONS ORL
[7]  
Brezis H, 2011, UNIVERSITEXT, P349, DOI 10.1007/978-0-387-70914-7_11
[8]  
Browder F., 1969, J. Functional Anal, V3, P217
[9]  
CANOCASANOVA S, 2004, TOPOL METHOD NONL AN, V23, P45
[10]   EQUIVALENCE BETWEEN UNIFORM L2* (Ω) A-PRIORI BOUNDS AND UNIFORM L∞(Ω) A-PRIORI BOUNDS FOR SUBCRITICAL ELLIPTIC EQUATIONS [J].
Castro, Alfonso ;
Mavinga, Nsoki ;
Pardo, Rosa .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 53 (01) :43-56