Predicting the involvement of polyQ- and polyA in protein-protein interactions by their amino acid context

被引:0
|
作者
Mier, Pablo [1 ]
Andrade-Navarro, Miguel A. [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Organism & Mol Evolut, Fac Biol, Hans Dieter Husch Weg 15, D-55128 Mainz, Germany
关键词
Homorepeat; Polyglutamine; Polyalanine; Protein-protein interaction; Machine learning; STRUCTURAL BASIS; AGGREGATION; RECOGNITION; HOMOREPEATS; POLYALANINE; EVOLUTION; EXPANSION; REGIONS; FIR;
D O I
10.1016/j.heliyon.2024.e37861
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Homorepeats, specifically polyglutamine (polyQ) and polyalanine (polyA), are often implicated in protein-protein interactions (PPIs). So far, a method to predict the participation of homorepeats in protein interactions is lacking. We propose a machine learning approach to identify PPI-involved polyQ and polyA regions within the human proteome based on known interacting regions. Using the dataset of human homorepeats, we identified 157 polyQ and 745 polyA regions potentially involved in PPIs. Machine learning models, trained on amino acid context and homorepeat length, demonstrated high precision (0.90-0.98) but variable recall (0.42-0.85). Random forest outperformed other models (AUC polyQ = 0.686, AUC polyA = 0.732) using the positions surrounding the homorepeat -10 to +10. Integrating paralog information marginally improved predictions but was excluded for model simplicity. Further optimization revealed that for polyQ, using amino acid surrounding positions from -6 to +6 increased AUC to 0.715. For polyA, no improvement was found. Incorporating coiled coil overlap information enhanced polyA predictions (AUC = 0.745) but not polyQ. Finally, we applied these models to predict PPI involvement across all polyQ and polyA regions, identifying potential interactions. Case studies illustrated the method's predictive capacity, highlighting known interacting regions with high scores and elucidating potential false negatives.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Amino acid domains mediating I-Cln protein-protein interactions
    Emma, F
    SanchezOlea, R
    Strange, K
    JOURNAL OF GENERAL PHYSIOLOGY, 1996, 108 (02): : 60 - 60
  • [32] Identifying Antioxidant Proteins by Using Amino Acid Composition and Protein-Protein Interactions
    Zhai, Yixiao
    Chen, Yu
    Teng, Zhixia
    Zhao, Yuming
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [33] Computational approaches for predicting protein-protein interactions: A survey
    Yu J.
    Fotouhi F.
    Journal of Medical Systems, 2006, 30 (1) : 39 - 44
  • [34] Predicting disease genes using protein-protein interactions
    Oti, M.
    Snel, B.
    Huynen, M. A.
    Brunner, H. G.
    JOURNAL OF MEDICAL GENETICS, 2006, 43 (08) : 691 - 698
  • [35] Predicting protein-protein interactions using signature products
    Martin, S
    Roe, D
    Faulon, JL
    BIOINFORMATICS, 2005, 21 (02) : 218 - 226
  • [36] Predicting protein-protein interactions by a supervised learning classifier
    Huang, Y
    Frishman, D
    Muchnik, I
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2004, 28 (04) : 291 - 301
  • [37] Machine learning solutions for predicting protein-protein interactions
    Casadio, Rita
    Martelli, Pier Luigi
    Savojardo, Castrense
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (06)
  • [38] Predicting Protein-Protein Interactions based on ensemble classifiers
    Zhou, Zheng-Rong
    Song, Xiao-Feng
    Wang, Ming-Hao
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (06): : 1464 - 1467
  • [39] Recent advances in predicting and modeling protein-protein interactions
    Durham, Jesse
    Zhang, Jing
    Humphreys, Ian R.
    Pei, Jimin
    Cong, Qian
    TRENDS IN BIOCHEMICAL SCIENCES, 2023, 48 (06) : 527 - 538
  • [40] A survey on computational models for predicting protein-protein interactions
    Hu, Lun
    Wang, Xiaojuan
    Huang, Yu-An
    Hu, Pengwei
    You, Zhu-Hong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)