Predicting the involvement of polyQ- and polyA in protein-protein interactions by their amino acid context

被引:0
|
作者
Mier, Pablo [1 ]
Andrade-Navarro, Miguel A. [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Organism & Mol Evolut, Fac Biol, Hans Dieter Husch Weg 15, D-55128 Mainz, Germany
关键词
Homorepeat; Polyglutamine; Polyalanine; Protein-protein interaction; Machine learning; STRUCTURAL BASIS; AGGREGATION; RECOGNITION; HOMOREPEATS; POLYALANINE; EVOLUTION; EXPANSION; REGIONS; FIR;
D O I
10.1016/j.heliyon.2024.e37861
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Homorepeats, specifically polyglutamine (polyQ) and polyalanine (polyA), are often implicated in protein-protein interactions (PPIs). So far, a method to predict the participation of homorepeats in protein interactions is lacking. We propose a machine learning approach to identify PPI-involved polyQ and polyA regions within the human proteome based on known interacting regions. Using the dataset of human homorepeats, we identified 157 polyQ and 745 polyA regions potentially involved in PPIs. Machine learning models, trained on amino acid context and homorepeat length, demonstrated high precision (0.90-0.98) but variable recall (0.42-0.85). Random forest outperformed other models (AUC polyQ = 0.686, AUC polyA = 0.732) using the positions surrounding the homorepeat -10 to +10. Integrating paralog information marginally improved predictions but was excluded for model simplicity. Further optimization revealed that for polyQ, using amino acid surrounding positions from -6 to +6 increased AUC to 0.715. For polyA, no improvement was found. Incorporating coiled coil overlap information enhanced polyA predictions (AUC = 0.745) but not polyQ. Finally, we applied these models to predict PPI involvement across all polyQ and polyA regions, identifying potential interactions. Case studies illustrated the method's predictive capacity, highlighting known interacting regions with high scores and elucidating potential false negatives.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Predicting protein-protein interactions by weighted pseudo amino acid composition
    Goktepe, Yunus Emre
    Ilhan, Ilhan
    Kahramanli, Sirzat
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 15 (03) : 272 - 290
  • [2] A bifunctional amino acid to study protein-protein interactions
    Yang, Tangpo
    Li, Xin
    Li, Xiang David
    RSC ADVANCES, 2020, 10 (69) : 42076 - 42083
  • [3] Hyperplanes for predicting protein-protein interactions
    Nanni, L
    NEUROCOMPUTING, 2005, 69 (1-3) : 257 - 263
  • [4] Analysis of Amino Acid Pairs Relationships Based on Protein-Protein Interactions
    Thepsutum, Kittirat
    Ngamsuriyaroj, Sudsanguan
    2015 INTERNATIONAL COMPUTER SCIENCE AND ENGINEERING CONFERENCE (ICSEC), 2015, : 193 - 197
  • [5] Fusion of classifiers for predicting protein-protein interactions
    Nanni, L
    NEUROCOMPUTING, 2005, 68 : 289 - 296
  • [6] Computational Methods For Predicting Protein-Protein Interactions
    Pitre, Sylvain
    Alamgir, Md
    Green, James R.
    Dumontier, Michel
    Dehne, Frank
    Golshani, Ashkan
    PROTEIN - PROTEIN INTERACTION, 2008, 110 : 247 - 267
  • [7] On the specificity of protein-protein interactions in the context of disorder
    Teilum, Kaare
    Olsen, Johan G.
    Kragelund, Birthe B.
    BIOCHEMICAL JOURNAL, 2021, 478 (11) : 2035 - 2050
  • [8] Identifying Antioxidant Proteins by Using Amino Acid Composition and Protein-Protein Interactions
    Zhai, Yixiao
    Chen, Yu
    Teng, Zhixia
    Zhao, Yuming
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [9] Predicting protein-protein interactions using graph invariants and a neural network
    Knisley, D.
    Knisley, J.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2011, 35 (02) : 108 - 113
  • [10] A survey on computational models for predicting protein-protein interactions
    Hu, Lun
    Wang, Xiaojuan
    Huang, Yu-An
    Hu, Pengwei
    You, Zhu-Hong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)