A novel analysis of the fractional Cauchy reaction-diffusion equations

被引:0
作者
Sarwe, Deepak Umarao [1 ]
Raj, A. Stephan Antony [2 ]
Kumar, Pushpendra [3 ,4 ]
Salahshour, Soheil [3 ,5 ,6 ]
机构
[1] Univ Mumbai, Dept Math, Mumbai 400098, Maharastra, India
[2] SNS Coll Engn, Dept Math, Coimbatore, India
[3] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[4] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin 10, Nicosia, Turkiye
[5] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[6] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
关键词
Cauchy reaction-diffusion equations; Caputo fractional derivative; Fractional natural decomposition method;
D O I
10.1007/s12648-024-03411-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article considers the Cauchy reaction-diffusion equations and derives the numerical solutions using the fractional natural decomposition method (FNDM). The projected solution approach works without conversion or perturbation. The examples confirm the method's accuracy and reliability, allowing for fractional order studies in real-world problems. Plots and tables validate the accuracy of the proposed scheme. This research reveals the influences of temporal history in the fractional Cauchy reaction-diffusion equations, which is the novelty of this work.
引用
收藏
页码:1825 / 1837
页数:13
相关论文
共 50 条
[41]   Analysis of differential equations of fractional order [J].
Sayevand, K. ;
Golbabai, A. ;
Yildirim, Ahmet .
APPLIED MATHEMATICAL MODELLING, 2012, 36 (09) :4356-4364
[42]   A computational study of variable coefficients fractional advection-diffusion-reaction equations via implicit meshless spectral algorithm [J].
Haq, Sirajul ;
Hussain, Manzoor ;
Ghafoor, Abdul .
ENGINEERING WITH COMPUTERS, 2020, 36 (04) :1243-1263
[43]   Fractional calculus - A new approach to the analysis of generalized fourth-order diffusion-wave equations [J].
Golbabai, A. ;
Sayevand, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) :2227-2231
[44]   TWO-DIMENSIONAL FRACTIONAL EULER POLYNOMIALS METHOD FOR FRACTIONAL DIFFUSION-WAVE EQUATIONS [J].
Balachandar, S. Raja ;
Venkatesh, S. G. ;
Balasubramanian, K. ;
Uma, D. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)
[45]   A NOVEL SERIES METHOD FOR FRACTIONAL DIFFUSION EQUATION WITHIN CAPUTO FRACTIONAL DERIVATIVE [J].
Yan, Sheng-Ping ;
Zhong, Wei-Ping ;
Yang, Xiao-Jun .
THERMAL SCIENCE, 2016, 20 :S695-S699
[46]   A novel adaptive procedure for solving fractional differential equations [J].
Jannelli, Alessandra .
JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 47
[47]   ON THE CRITICAL BEHAVIOR FOR TIME-FRACTIONAL REACTION DIFFUSION PROBLEMS [J].
Aldawish, Ibtisam ;
Samet, Bessem .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (08) :2030-2046
[48]   Nonexistence for a system of time-fractional diffusion equations in an exterior domain [J].
Jleli, Mohamed ;
Samet, Bessem .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (03) :3351-3364
[49]   Fractional Diffusion-Wave Equations: Hidden Regularity for Weak Solutions [J].
Paola Loreti ;
Daniela Sforza .
Fractional Calculus and Applied Analysis, 2021, 24 :1015-1034
[50]   Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition [J].
Jafari, Hossein ;
Daftardar-Gejji, Varsha .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (02) :488-497