A novel analysis of the fractional Cauchy reaction-diffusion equations

被引:0
作者
Sarwe, Deepak Umarao [1 ]
Raj, A. Stephan Antony [2 ]
Kumar, Pushpendra [3 ,4 ]
Salahshour, Soheil [3 ,5 ,6 ]
机构
[1] Univ Mumbai, Dept Math, Mumbai 400098, Maharastra, India
[2] SNS Coll Engn, Dept Math, Coimbatore, India
[3] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[4] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin 10, Nicosia, Turkiye
[5] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[6] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
关键词
Cauchy reaction-diffusion equations; Caputo fractional derivative; Fractional natural decomposition method;
D O I
10.1007/s12648-024-03411-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article considers the Cauchy reaction-diffusion equations and derives the numerical solutions using the fractional natural decomposition method (FNDM). The projected solution approach works without conversion or perturbation. The examples confirm the method's accuracy and reliability, allowing for fractional order studies in real-world problems. Plots and tables validate the accuracy of the proposed scheme. This research reveals the influences of temporal history in the fractional Cauchy reaction-diffusion equations, which is the novelty of this work.
引用
收藏
页码:1825 / 1837
页数:13
相关论文
共 50 条
[21]   The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces [J].
Peng, Li ;
Zhou, Yong ;
Ahmad, Bashir ;
Alsaedi, Ahmed .
CHAOS SOLITONS & FRACTALS, 2017, 102 :218-228
[22]   Cauchy problem for impulsive fractional differential equations with almost sectorial operators [J].
Jaiswal, Anjali ;
Tyagi, Jagmohan .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2022, 41 (3-4) :347-370
[23]   A new regularization method for a Cauchy problem of the time fractional diffusion equation [J].
G. H. Zheng ;
T. Wei .
Advances in Computational Mathematics, 2012, 36 :377-398
[24]   A new regularization method for a Cauchy problem of the time fractional diffusion equation [J].
Zheng, G. H. ;
Wei, T. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (02) :377-398
[25]   Homogenization and inverse problems for fractional diffusion equations [J].
Atsushi Kawamoto ;
Manabu Machida ;
Masahiro Yamamoto .
Fractional Calculus and Applied Analysis, 2023, 26 :2118-2165
[26]   Homogenization and inverse problems for fractional diffusion equations [J].
Kawamoto, Atsushi ;
Machida, Manabu ;
Yamamoto, Masahiro .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (05) :2118-2165
[27]   Analytical solution of the reaction-diffusion equation with space-time fractional derivatives by means of the generalized differential transform method [J].
Garg, Mridula ;
Manohar, Pratibha .
KUWAIT JOURNAL OF SCIENCE, 2013, 40 (01) :23-34
[28]   Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem [J].
Liu, Yang ;
Du, Yanwei ;
Li, Hong ;
He, Siriguleng ;
Gao, Wei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) :573-591
[29]   Fractional Approach for Diffusion Equations Arising From Oil Pollution Using the Fractional Natural Decomposition Method [J].
Dusunceli, Faruk ;
Celik, Ercan .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2025, 125 (01)
[30]   A class of time-fractional diffusion equations with generalized fractional derivatives [J].
Alikhanov, Anatoly A. ;
Huang, Chengming .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 414