A novel analysis of the fractional Cauchy reaction-diffusion equations

被引:0
作者
Sarwe, Deepak Umarao [1 ]
Raj, A. Stephan Antony [2 ]
Kumar, Pushpendra [3 ,4 ]
Salahshour, Soheil [3 ,5 ,6 ]
机构
[1] Univ Mumbai, Dept Math, Mumbai 400098, Maharastra, India
[2] SNS Coll Engn, Dept Math, Coimbatore, India
[3] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[4] Near East Univ TRNC, Math Res Ctr, Dept Math, Mersin 10, Nicosia, Turkiye
[5] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[6] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
关键词
Cauchy reaction-diffusion equations; Caputo fractional derivative; Fractional natural decomposition method;
D O I
10.1007/s12648-024-03411-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article considers the Cauchy reaction-diffusion equations and derives the numerical solutions using the fractional natural decomposition method (FNDM). The projected solution approach works without conversion or perturbation. The examples confirm the method's accuracy and reliability, allowing for fractional order studies in real-world problems. Plots and tables validate the accuracy of the proposed scheme. This research reveals the influences of temporal history in the fractional Cauchy reaction-diffusion equations, which is the novelty of this work.
引用
收藏
页码:1825 / 1837
页数:13
相关论文
共 50 条
[1]   AN ITERATIVE APPROACH FOR SOLVING FRACTIONAL ORDER CAUCHY REACTION-DIFFUSION EQUATIONS [J].
Kumar, Manoj .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2023, 22 (03) :19-32
[2]   A reliable numerical method for solving fractional reaction-diffusion equations [J].
Yadav, Supriya ;
Kumar, Devendra ;
Nisar, Kottakkaran Sooppy .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (02)
[3]   Novel Numerical Investigations of Fuzzy Cauchy Reaction-Diffusion Models via Generalized Fuzzy Fractional Derivative Operators [J].
Alqudah, Manar A. ;
Ashraf, Rehana ;
Rashid, Saima ;
Singh, Jagdev ;
Hammouch, Zakia ;
Abdeljawad, Thabet .
FRACTAL AND FRACTIONAL, 2021, 5 (04)
[4]   A new Sumudu transform iterative method for time-fractional Cauchy reaction-diffusion equation [J].
Wang, Kangle ;
Liu, Sanyang .
SPRINGERPLUS, 2016, 5
[5]   Solutions of the Reaction-Diffusion Brusselator with Fractional Derivatives [J].
Anber, Ahmed ;
Dahmani, Zoubir .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2014, 17 (5-6) :451-460
[6]   Dynamics of the time-fractional reaction-diffusion coupled equations in biological and chemical processes [J].
Ghafoor, Abdul ;
Fiaz, Muhammad ;
Hussain, Manzoor ;
Ullah, Asad ;
Ismail, Emad A. A. ;
Awwad, Fuad A. .
SCIENTIFIC REPORTS, 2024, 14 (01)
[7]   Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction-diffusion equations [J].
Abdelkawy, M. A. ;
Lopes, Antonio M. ;
Zaky, M. A. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02)
[8]   Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system [J].
Owolabi, Kolade M. ;
Karaagac, Berat .
CHAOS SOLITONS & FRACTALS, 2020, 141
[9]   Local existence and nonexistence for fractional in time reaction-diffusion equations and systems with rapidly growing nonlinear terms [J].
Suzuki, Masamitsu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 222
[10]   A fully discrete scheme based on cubic splines and its analysis for time-fractional reaction-diffusion equations exhibiting weak initial singularity [J].
Singh, Anshima ;
Kumar, Sunil ;
Vigo-Aguiar, Jesus .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 434