Parameterized problems complete for nondeterministic FPT time and logarithmic space ☆

被引:1
作者
Bodlaender, Hans L. [1 ]
Groenland, Carla [2 ]
Nederlof, Jesper [1 ]
Swennenhuis, Celine [3 ,4 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[2] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Delft, Netherlands
[3] Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands
[4] Univ Utrecht, Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
DYNAMIC-PROGRAMMING ALGORITHMS; BANDWIDTH MINIMIZATION; TRACTABILITY; PATHWIDTH; GRAPHS;
D O I
10.1016/j.ic.2024.105195
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let XNLP be the class of parameterized problems such that an instance of size n with parameter k can be solved nondeterministically in time f (k)nO (1) and space f (k) log(n) (for some computable function f ). We give a wide variety of XNLP-complete problems, such as LIST COLORING and PRECOLORING EXTENSION with pathwidth as parameter, SCHEDULING OF JOBS WITH PRECEDENCE CONSTRAINTS, with both number of machines and partial order width as parameter, BANDWIDTH and variants of WEIGHTED CNF-SATISFIABILITY. In particular, this implies that all these problems are W[t]-hard for all t. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:34
相关论文
共 53 条
[1]  
Abboud A, 2014, LECT NOTES COMPUT SC, V8737, P1, DOI 10.1007/978-3-662-44777-2_1
[2]   LINEAR TIME ALGORITHMS FOR NP-HARD PROBLEMS RESTRICTED TO PARTIAL K-TREES [J].
ARNBORG, S ;
PROSKUROWSKI, A .
DISCRETE APPLIED MATHEMATICS, 1989, 23 (01) :11-24
[3]  
Arora S., 2007, Computational Complexity: A Modern Approach
[4]  
Bakkane B.I.K., 2022, LIPIcs, V249, P3
[5]  
Bodlaender H. L., 1994, Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, P449, DOI 10.1145/195058.195229
[6]  
Bodlaender H.L., 2022, PMLR, V186, P145
[7]  
Bodlaender H.L., 2023, LIPICS, V261
[8]  
Bodlaender H.L., 2022, LIPICS, V249, P8
[9]  
Bodlaender H.L., 2021, LIPICS, V214, P9
[10]  
Bodlaender H.L., 2023, LIPICS, V285