Frobenius Numbers Associated with Diophantine Triples of x2-y2=z®

被引:1
作者
Yin, Ruze [1 ]
Komatsu, Takao [2 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Dept Math Sci, Hangzhou 310018, Peoples R China
[2] Nagasaki Univ, Fac Educ, Nagasaki 8528521, Japan
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 07期
关键词
Frobenius problem; Diophantine equations; Pythagorean triples; Ap & eacute; ry set; CONVERGENTS; SEQUENCES; SUMS;
D O I
10.3390/sym16070855
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We give an explicit formula for the p-Frobenius number of triples associated with Diophantine Equations x(2)-y(2)=z (R) (r >= 2), that is, the largest positive integer that can only be represented in p ways by combining the three integers of the solutions of Diophantine equations x(2)-y(2)=z (R). This result is also a generalization because if r=2 and p=0, the (0-)Frobenius number of the Pythagorean triple has already been given. To find p-Frobenius numbers, we use geometrically easy to understand figures of the elements of the p-Ap & eacute;ry set, which exhibits symmetric appearances.
引用
收藏
页数:16
相关论文
共 38 条
[1]  
APERY R, 1946, CR HEBD ACAD SCI, V222, P1198
[2]  
BRAUER A, 1962, J REINE ANGEW MATH, V211, P215
[3]  
Cayley A., 1860, PHILOS MAG, VXX, P337, DOI DOI 10.1080/14786446008642957
[4]   On Convergents of Certain Values of Hyperbolic Functions Formed from Diophantine Equations [J].
Chaichana, Tuangrat ;
Komatsu, Takao ;
Laohakosol, Vichian .
TOKYO JOURNAL OF MATHEMATICS, 2013, 36 (01) :239-251
[5]  
COHEN H., 2007, Graduate Texts in Mathematics, V240
[6]  
Cohen Henri., 2007, GRADUATE TEXTS MATH
[7]   ON FORMULAS FOR THE FROBENIUS NUMBER OF A NUMERICAL SEMIGROUP [J].
CURTIS, F .
MATHEMATICA SCANDINAVICA, 1990, 67 (02) :190-192
[8]  
Dickson L. E., 2005, History of the Theory of Numbers
[9]  
Elizeche E.F., 2020, Integers, V20, pA75
[10]  
Elsner C., 2006, SEMINAR MATH SCI, P59