Effect of grain boundary ferrite morphologies on impact toughness of X80 girth weld

被引:3
作者
Wang, Ce [1 ]
Di, Xinjie [1 ,2 ]
Dai, Lianshuang [3 ]
Duan, Qiyue [1 ]
Han, Jiawei [1 ]
Yang, Xiaocong [1 ]
Cui, Shaohua [3 ]
Li, Chengning [1 ,2 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[2] Tianjin Key Lab Adv Joining Technol, Tianjin 300072, Peoples R China
[3] China Oil & Gas Pipeline Network Corp, Beijing 100013, Peoples R China
基金
中国国家自然科学基金;
关键词
Grain boundary ferrite morphologies; Impact toughness; X80 girth weld; Crack; finite element simulation; HEAT-AFFECTED ZONE; FRACTURE-TOUGHNESS; MICROSTRUCTURE; STRENGTH; CONSTITUENTS; INDENTATION; COMBINATION; STEEL;
D O I
10.1016/j.matlet.2024.137412
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The X80 girth weld microstructure formed by high-strength acicular ferrite and low-strength grain boundary ferrite was studied to investigate the effect of grain boundary ferrite morphologies on impact toughness. The results show that due to the difference in direction of heat loss caused by the narrow groove, the grain boundary ferrite morphology of the weld metal center and the weld metal edge are continuous network structure and parallel layered structure, respectively. The continuous network structure grain boundary ferrite causes strain localization, resulting in the formation of a large number of secondary cracks in the crack propagation process, which seriously deteriorates the toughness.
引用
收藏
页数:4
相关论文
共 21 条
[1]   Effect of Nb microalloying on the heat affected zone microstructure of girth welded joints [J].
Di Schino, A. ;
Di Nunzio, Paolo E. .
MATERIALS LETTERS, 2017, 186 :86-89
[2]   Influence of martensite-austenite (MA) on impact toughness of X80 line pipe steels [J].
Huda, Nazmul ;
Midawi, Abdelbaset R. H. ;
Gianetto, James ;
Lazor, Robert ;
Gerlich, Adrian P. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 662 :481-491
[3]   Role of delamination and crystallography on anisotropy of Charpy toughness in API-X80 steel [J].
Joo, M. S. ;
Suh, D. -W. ;
Bae, J. H. ;
Bhadeshia, H. K. D. H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 546 :314-322
[4]   Effect of microstructural constituents on strength-toughness combination in a low carbon bainitic steel [J].
Lan, H. F. ;
Du, L. X. ;
Misra, R. D. K. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 611 :194-200
[5]   Ultrafine microstructure design of high strength pipeline steel for low temperature service: The significant impact on toughness [J].
Li, X. C. ;
Zhao, J. X. ;
Jia, S. J. ;
Lu, G. Y. ;
Misra, R. D. K. ;
Liu, Q. Y. ;
Li, B. .
MATERIALS LETTERS, 2021, 303
[6]   Environmental risk of oil pipeline accidents [J].
Lu, Hongfang ;
Xi, Dongmin ;
Qin, Guojin .
SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 874
[7]   Effect of morphologies of martensite-austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel [J].
Luo, Xiang ;
Chen, Xiaohua ;
Wang, Tao ;
Pan, Shiwei ;
Wang, Zidong .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 710 :192-199
[8]   FEM modeling of the flow curves and failure modes of dual phase steels with different martensite volume fractions using actual microstructure as the representative volume [J].
Marvi-Mashhadi, M. ;
Mazinani, M. ;
Rezaee-Bazzaz, A. .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 65 :197-202
[9]   Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J].
Oliver, WC ;
Pharr, GM .
JOURNAL OF MATERIALS RESEARCH, 2004, 19 (01) :3-20
[10]  
Ritchie RO, 2011, NAT MATER, V10, P817, DOI [10.1038/nmat3115, 10.1038/NMAT3115]