共 50 条
Effect of Temperature on the Mixed mode I/II Translaminar Fracture of Epoxy Composites Reinforced with Cotton Fibers
被引:0
|作者:
Zeinedini, Afshin
[1
]
Hasan, Yosra Basim
[2
]
机构:
[1] Kermanshah Univ Technol, Dept Mech Engn, Kermanshah, Iran
[2] Islamic Azad Univ, Kermanshah Branch, Dept Mech Engn, Kermanshah, Iran
关键词:
Epoxy;
Fracture Toughness;
Natural Fiber;
Laminated Composites;
Temperature;
Translaminar Fracture;
TOUGHNESS;
D O I:
10.1007/s10443-024-10267-4
中图分类号:
TB33 [复合材料];
学科分类号:
摘要:
In recent years, laminated composites reinforced with natural fibers have extensively used in the various industries. One of the most important failure modes of laminated composite materials is translaminar fracture under different loading conditions. In this research, the effect of temperature on the translaminar critical strain energy release rate (CSERR) of the composites reinforced with cotton fibers was investigated. The cotton/epoxy samples were placed at different temperature conditions of 30, 0, and -30 degrees C. The translaminar CSERR values of cotton/epoxy laminated composites were obtained under pure mode I, mixed mode I/II with two different loading angles, and pure mode II loading conditions. To calculate the translaminar CSERR based on experimental results, numerical modeling was also performed. Besides, a modified version of Mixed Mode Fracture Envelope criterion was proposed to predict the mixed mode I/II translaminar fracture behavior of the cotton/epoxy laminated composites at the mentioned temperatures. The results showed that lowering the temperature has a great impact on the translaminar CSERR. It was also concluded that the change in the temperature had the greatest effect on the value of the mode I translaminar CSERR. Moreover, as the temperature decreased from 30 to 0 and -30 degrees C, the value of the mode I translaminar CSERR decreased around 80 and 90%, respectively.
引用
收藏
页码:281 / 302
页数:22
相关论文