Twenty-nine million intrinsic Q-factor monolithic microresonators on thin-film lithium niobate

被引:18
作者
Zhu, Xinrui [1 ]
Hu, Yaowen [1 ,2 ,3 ]
Lu, Shengyuan [1 ]
Warner, Hana K. [1 ]
Li, Xudong [1 ]
Song, Yunxiang [1 ]
Magalhaes, Leticia [1 ]
Shams-Ansari, Amirhassan [1 ,4 ]
Cordaro, Andrea [1 ]
Sinclair, Neil [1 ]
Loncar, Marko [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[3] Peking Univ, Frontiers Sci Ctr Nanooptoelectron, Sch Phys, Beijing 100871, Peoples R China
[4] DRS Daylight Solut, San Diego, CA 92127 USA
基金
美国国家航空航天局; 美国国家卫生研究院; 美国国家科学基金会; 新加坡国家研究基金会;
关键词
PHOTONICS; RESONATOR;
D O I
10.1364/PRJ.521172
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The recent emergence of thin-film lithium niobate (TFLN) has extended the landscape of integrated photonics. This has been enabled by the commercialization of TFLN wafers and advanced nanofabrication of TFLN such as high-quality dry etching. However, fabrication imperfections still limit the propagation loss to a few dB/m, restricting the impact of this platform. Here, we demonstrate TFLN microresonators with a record-high intrinsic quality (Q) Q ) factor of twenty-nine million, corresponding to an ultra-low propagation loss of 1.3 dB/m. We present spectral analysis and the statistical distribution of Q factors across different resonator geometries. Our work pushes the fabrication limits of TFLN photonics to achieve a Q factor within 1 order of magnitude of the material limit. (c) 2024 Chinese Laser Press
引用
收藏
页码:A63 / A68
页数:6
相关论文
共 58 条
[21]  
Li XT, 2024, Arxiv, DOI arXiv:2312.09568
[22]   Turnkey generation of Kerr soliton microcombs on thin-film lithium niobate on insulator microresonators powered by the photorefractive effect [J].
Lin, Zongxing ;
Kang, Zhe ;
Xu, Peipeng ;
Tian, Ye ;
He, Sailing .
OPTICS EXPRESS, 2021, 29 (26) :42932-42944
[23]   Wafer-scale low-loss lithium niobate photonic integrated circuits [J].
Luke, Kevin ;
Kharel, Prashanta ;
Reimer, Christian ;
He, Lingyan ;
Loncar, Marko ;
Zhang, Mian .
OPTICS EXPRESS, 2020, 28 (17) :24452-24458
[24]   Integrated microwave photonics [J].
Marpaung, David ;
Yao, Jianping ;
Capmany, Jose .
NATURE PHOTONICS, 2019, 13 (02) :80-90
[25]   Integrated microwave photonics [J].
Marpaung, David ;
Roeloffzen, Chris ;
Heideman, Rene ;
Leinse, Arne ;
Sales, Salvador ;
Capmany, Jose .
LASER & PHOTONICS REVIEWS, 2013, 7 (04) :506-538
[26]   Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer [J].
McKenna, Timothy P. ;
Witmer, Jeremy D. ;
Patel, Rishi N. ;
Jiang, Wentao ;
Van Laer, Raphael ;
Arrangoiz-Arriola, Patricio ;
Wollack, E. Alex ;
Herrmann, Jason F. ;
Safavi-Naeini, Amir H. .
OPTICA, 2020, 7 (12) :1737-1745
[27]   Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs [J].
Moille, Gregory ;
Li, Qing ;
Briles, Travis C. ;
Yu, Su-Peng ;
Drake, Tara ;
Lu, Xiyuan ;
Rao, Ashutosh ;
Westly, Daron ;
Papp, Scott B. ;
Srinivasan, Kartik .
OPTICS LETTERS, 2019, 44 (19) :4737-4740
[28]   Photonic quantum technologies [J].
O'Brien, Jeremy L. ;
Furusawa, Akira ;
Vuckovic, Jelena .
NATURE PHOTONICS, 2009, 3 (12) :687-695
[29]   The potential and global outlook of integrated photonics for quantum technologies [J].
Pelucchi, Emanuele ;
Fagas, Giorgos ;
Aharonovich, Igor ;
Englund, Dirk ;
Figueroa, Eden ;
Gong, Qihuang ;
Hannes, Hubel ;
Liu, Jin ;
Lu, Chao-Yang ;
Matsuda, Nobuyuki ;
Pan, Jian-Wei ;
Schreck, Florian ;
Sciarrino, Fabio ;
Silberhorn, Christine ;
Wang, Jianwei ;
Jons, Klaus D. .
NATURE REVIEWS PHYSICS, 2022, 4 (03) :194-208
[30]   Coupling Ideality of Integrated Planar High-Q Microresonators [J].
Pfeiffer, Martin H. P. ;
Liu, Junqiu ;
Geiselmann, Michael ;
Kippenberg, Tobias J. .
PHYSICAL REVIEW APPLIED, 2017, 7 (02)