Twenty-nine million intrinsic Q-factor monolithic microresonators on thin-film lithium niobate

被引:18
作者
Zhu, Xinrui [1 ]
Hu, Yaowen [1 ,2 ,3 ]
Lu, Shengyuan [1 ]
Warner, Hana K. [1 ]
Li, Xudong [1 ]
Song, Yunxiang [1 ]
Magalhaes, Leticia [1 ]
Shams-Ansari, Amirhassan [1 ,4 ]
Cordaro, Andrea [1 ]
Sinclair, Neil [1 ]
Loncar, Marko [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[3] Peking Univ, Frontiers Sci Ctr Nanooptoelectron, Sch Phys, Beijing 100871, Peoples R China
[4] DRS Daylight Solut, San Diego, CA 92127 USA
基金
美国国家航空航天局; 美国国家科学基金会; 新加坡国家研究基金会; 美国国家卫生研究院;
关键词
PHOTONICS; RESONATOR;
D O I
10.1364/PRJ.521172
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The recent emergence of thin-film lithium niobate (TFLN) has extended the landscape of integrated photonics. This has been enabled by the commercialization of TFLN wafers and advanced nanofabrication of TFLN such as high-quality dry etching. However, fabrication imperfections still limit the propagation loss to a few dB/m, restricting the impact of this platform. Here, we demonstrate TFLN microresonators with a record-high intrinsic quality (Q) Q ) factor of twenty-nine million, corresponding to an ultra-low propagation loss of 1.3 dB/m. We present spectral analysis and the statistical distribution of Q factors across different resonator geometries. Our work pushes the fabrication limits of TFLN photonics to achieve a Q factor within 1 order of magnitude of the material limit. (c) 2024 Chinese Laser Press
引用
收藏
页码:A63 / A68
页数:6
相关论文
共 58 条
[1]   Integrated optical frequency comb technologies [J].
Chang, Lin ;
Liu, Songtao ;
Bowers, John E. .
NATURE PHOTONICS, 2022, 16 (02) :95-108
[2]   Advances in lithium niobate photonics: development status and perspectives [J].
Chen, Guanyu ;
Li, Nanxi ;
Ng, Jun Da ;
Lin, Hong-Lin ;
Zhou, Yanyan ;
Fu, Yuan Hsing ;
Lee, Lennon Yao Ting ;
Yu, Yu ;
Liu, Ai-Qun ;
Danner, Aaron J. .
ADVANCED PHOTONICS, 2022, 4 (03)
[3]   Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides [J].
Chen, Pao-Kang ;
Briggs, Ian ;
Cui, Chaohan ;
Zhang, Liang ;
Shah, Manav ;
Fan, Linran .
NATURE NANOTECHNOLOGY, 2024, 19 (01) :44-+
[4]  
Cheng RBC, 2024, Arxiv, DOI arXiv:2304.12878
[5]  
Fandiño JS, 2017, NAT PHOTONICS, V11, P124, DOI [10.1038/NPHOTON.2016.233, 10.1038/nphoton.2016.233]
[6]   Lithium niobate microring with ultra-high Q factor above 108 [J].
Gao, Renhong ;
Yao, Ni ;
Guan, Jianglin ;
Deng, Li ;
Lin, Jintian ;
Wang, Min ;
Qiao, Lingling ;
Fang, Wei ;
Cheng, Ya .
CHINESE OPTICS LETTERS, 2022, 20 (01)
[7]   Compact lithium niobate microring resonators in the ultrahigh Q/V regime [J].
Gao, Yan ;
Lei, Fuchuan ;
Girardi, Marcello ;
Ye, Zhichao ;
Van Laer, Raphael ;
Torres-Company, Victor ;
Schroder, Jochen .
OPTICS LETTERS, 2023, 48 (15) :3949-3952
[8]   Near-octave lithium niobate soliton microcomb [J].
Gong, Zheng ;
Liu, Xianwen ;
Xu, Yuntao ;
Tang, Hong X. .
OPTICA, 2020, 7 (10) :1275-1278
[9]   Self-starting bi-chromatic LiNbO3 soliton microcomb [J].
He, Yang ;
Yang, Qi-Fan ;
Ling, Jingwei ;
Luo, Rui ;
Liang, Hanxiao ;
Li, Mingxiao ;
Shen, Boqiang ;
Wang, Heming ;
Vahala, Kerry ;
Lin, Qiang .
OPTICA, 2019, 6 (09) :1138-1144
[10]   Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction [J].
Holzgrafe, Jeffrey ;
Sinclair, Neil ;
Zhu, Di ;
Shams-Ansari, Amirhassan ;
Colangelo, Marco ;
Hu, Yaowen ;
Zhang, Mian ;
Berggren, Karl K. ;
Loncar, Marko .
OPTICA, 2020, 7 (12) :1714-1720