A Comparative Study of Different Pre-trained Language Models for Sentiment Analysis of Human-Computer Negotiation Dialogue

被引:1
作者
Dong, Jing [1 ]
Luo, Xudong [1 ,2 ,3 ]
Zhu, Junlin [1 ]
机构
[1] Guangxi Normal Univ, Sch Comp Sci & Engn, Guilin 541004, Guangxi, Peoples R China
[2] Minist Educ, Key Lab Educ Blockchain & Intelligent Technol, Guilin 541004, Guangxi, Peoples R China
[3] Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Guangxi, Peoples R China
来源
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT IV, KSEM 2024 | 2024年 / 14887卷
关键词
Sentiment analysis; Pre-trained language model; Fine-grained; Fine-tuning; Human-computer dialogue; ANGER;
D O I
10.1007/978-981-97-5501-1_23
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper offers a comprehensive comparative study of various pre-trained language models for sentiment analysis in human-computer negotiation dialogues. It examines numerous state-of-the-art PLMs, including GPT-3.5, BERT, and its variants, along with other models like Claude, ELECTRA, NEZHA, ERNIE 3.0, BART, and XLNet, focusing particularly on their effectiveness in sentiment detection in negotiation dialogues. Using a large, diverse dataset annotated with sentiment labels, the study assesses these models using accuracy, precision, recall, and F1 metrics. The findings highlight distinct performance differences among the models, providing insights for future research in automated negotiation systems and sentiment analysis in this context.
引用
收藏
页码:301 / 317
页数:17
相关论文
共 46 条
  • [1] Cultural Variance in the Interpersonal Effects of Anger in Negotiations
    Adam, Hajo
    Shirako, Aiwa
    Maddux, William W.
    [J]. PSYCHOLOGICAL SCIENCE, 2010, 21 (06) : 882 - 889
  • [2] Bang Y, 2023, Arxiv, DOI [arXiv:2302.04023, DOI 10.48550/ARXIV.2302.04023]
  • [3] Batista G. E., 2004, ACM SIGKDD Explor. Newsl., V6, P20, DOI [10.1145/1007730.1007735, 10.1145/1007730.1007735.2]
  • [4] Bishop C.M., 2006, Pattern Recognition and Machine Learning (Information Science and Statistics), VVolume 4
  • [5] Chockler H, 2007, FMCAD 2007: FORMAL METHODS IN COMPUTER AIDED DESIGN, PROCEEDINGS, P101, DOI 10.1109/.19
  • [6] Pre-Training With Whole Word Masking for Chinese BERT
    Cui, Yiming
    Che, Wanxiang
    Liu, Ting
    Qin, Bing
    Yang, Ziqing
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2021, 29 : 3504 - 3514
  • [7] Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171
  • [8] MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES
    DICE, LR
    [J]. ECOLOGY, 1945, 26 (03) : 297 - 302
  • [9] AN ARGUMENT FOR BASIC EMOTIONS
    EKMAN, P
    [J]. COGNITION & EMOTION, 1992, 6 (3-4) : 169 - 200
  • [10] Ekman Paul., 1999, HDB COGNITION EMOTIO, P45, DOI [DOI 10.1002/0470013494.CH3, 10.1002/0470013494, DOI 10.1002/0470013494, 10.1002/0470013494.ch3]