A class of space-time discretizations for the stochastic p-Stokes system

被引:1
作者
Le, Kim-Ngan [1 ]
Wichmann, Jorn [1 ]
机构
[1] Monash Univ, Sch Math, Melbourne, Australia
基金
澳大利亚研究理事会;
关键词
SPDEs; Stochastic p-stokes system; Power-law fluids; Conforming finite element methods; Convergence rates; Error analysis; FINITE-ELEMENT APPROXIMATION; DISCONTINUOUS GALERKIN APPROXIMATION; INCOMPRESSIBLE FLUIDS; CONVERGENCE-RATES; EQUATIONS; SOBOLEV; SCHEME; FLOWS;
D O I
10.1016/j.spa.2024.104443
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The main objective of the present paper is to construct a new class of space-time discretizations for the stochastic p-Stokes system and analyze its stability and convergence properties. We derive regularity results for the approximation that are similar to the natural regularity of solutions. One of the key arguments relies on discrete extrapolation that allows us to relate lower moments of discrete maximal processes. We show that, if the generic spatial discretization is constraint conforming, then the velocity approximation satisfies a best-approximation property in the natural distance. Moreover, we present an example such that the resulting velocity approximation converges with rate 1/2 in time and 1 in space towards the (unknown) target velocity with respect to the natural distance. The theory is corroborated by numerical experiments.
引用
收藏
页数:36
相关论文
共 64 条
[1]  
Abhyankar S., 2024, PETSc Web page
[2]   Equal-Order Stabilized Finite Element Approximation of the p-Stokes Equations on Anisotropic Cartesian Meshes [J].
Ahlkrona, Josefin ;
Braack, Malte .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (01) :1-25
[3]   Convergent numerical approximation of the stochastic total variation flow [J].
Banas, L'ubomir ;
Roeckner, Michael ;
Wilke, Andre .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (02) :437-471
[4]   NUMERICAL-ANALYSIS OF QUASI-NEWTONIAN FLOW OBEYING THE POWER LOW OR THE CARREAU FLOW [J].
BARANGER, J ;
NAJIB, K .
NUMERISCHE MATHEMATIK, 1990, 58 (01) :35-49
[5]   QUASI-NORM ERROR-BOUNDS FOR THE FINITE-ELEMENT APPROXIMATION OF A NON-NEWTONIAN FLOW [J].
BARRETT, JW ;
LIU, WB .
NUMERISCHE MATHEMATIK, 1994, 68 (04) :437-456
[6]   Convergence of a finite-volume scheme for a heat equation with a multiplicative Lipschitz noise [J].
Bauzet, Caroline ;
Nabet, Flore ;
Schmitz, Kerstin ;
Zimmermann, Aleksandra .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (02) :745-783
[7]   Lower and upper bounds for strong approximation errors for numerical approximations of stochastic heat equations [J].
Becker, Sebastian ;
Gess, Benjamin ;
Jentzen, Arnulf ;
Kloeden, Peter E. .
BIT NUMERICAL MATHEMATICS, 2020, 60 (04) :1057-1073
[8]   ON THE FINITE ELEMENT APPROXIMATION OF p-STOKES SYSTEMS [J].
Belenki, L. ;
Berselli, L. C. ;
Diening, L. ;
Ruzicka, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) :373-397
[9]   Analysis of fully discrete, quasi non-conforming approximations of evolution equations and applications [J].
Berselli, Luigi C. ;
Kaltenbach, Alex ;
Ruzicka, Michael .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (11) :2297-2343
[10]   OPTIMAL ERROR ESTIMATES FOR A SEMI-IMPLICIT EULER SCHEME FOR INCOMPRESSIBLE FLUIDS WITH SHEAR DEPENDENT VISCOSITIES [J].
Berselli, Luigi C. ;
Diening, Lars ;
Ruzicka, Michael .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :2177-2202