Dynamics of the Classical Counterpart of a Quantum Nonlinear Oscillator with Parametric Dissipation

被引:0
作者
Houeto, J. G. [1 ]
Hinvi, L. A. [1 ,2 ]
Miwadinou, C. H. [1 ,3 ]
Dozounhekpon, H. F. [1 ]
Monwanou, A. V. [1 ]
机构
[1] Inst Math Sci Phys, Lab Mecan Fluides, Dynam Nonlineaire & Modelisat Syst Biol LMFDNMSB, Porto Novo, Benin
[2] Univ Natl Sci Technol Ingenierie & Math UNSTIM, Dept Genie Mecan et Prod GMP, INSTI Lokossa, Abomey, Benin
[3] Univ Natl Sci Technol Ingenierie & Math UNSTIM, Ecole Normale Super Natitingou, Dept Phys Chim & Technol, Abomey, Benin
关键词
Classical oscillator; Parametric dissipation; Nonlinear resonance; Bifurcation; Route to chaos; POSITION-DEPENDENT MASS; DRIVEN;
D O I
10.1007/s10773-024-05787-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work analyzes the effect of parametric dissipation on the dynamics of the classical oscillator counterpart of a quantum nonlinear oscillator driven by a position-dependent mass. The multiple scale method is used to search the different possible states of resonances and two types of resonances are analyzed. The influence of system parameters and in particular that of parametric dissipation on the resonance amplitude is studied. The complete dynamics and transition to chaos of the oscillator are analyzed numerically using the Runge-Kutta algorithm of order 4. Bifurcation diagrams, Lyapunov exponents and phase spaces are used and the frequency doubling phenomenon is obtained and the limits of the system oscillations are widened.
引用
收藏
页数:25
相关论文
共 49 条
  • [1] Effect of biharmonic excitation on complex dynamics of a two-degree-of-freedom heavy symmetric gyroscope
    Aguessivognon, J. M.
    Miwadinou, C. H.
    Monwanou, A., V
    [J]. PHYSICA SCRIPTA, 2023, 98 (09)
  • [2] Deformed shape invariance and exactly solvable Hamiltonians with position-dependent effective mass
    Bagchi, B
    Banerjee, A
    Quesne, C
    Tkachuk, VM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (13): : 2929 - 2945
  • [3] Nonlinear dynamics of a position-dependent mass-driven Duffing-type oscillator
    Bagchi, Bijan
    Das, Supratim
    Ghosh, Samiran
    Poria, Swarup
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (03)
  • [4] Bucio A., 2024, Chaos Theo. Appl, V6, P83, DOI [10.51537/chaos.1376471, DOI 10.51537/CHAOS.1376471]
  • [5] One-dimensional model of a quantum nonlinear harmonic oscillator
    Cariñena, JF
    Rañada, MF
    Santander, M
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) : 285 - 293
  • [6] The quantum harmonic oscillator on the sphere and the hyperbolic plane
    Carinena, Jose F.
    Ranada, Manuel F.
    Santander, Mariano
    [J]. ANNALS OF PHYSICS, 2007, 322 (10) : 2249 - 2278
  • [7] Chen Y., 1998, Bifurcation and chaos in engineering, DOI [10.1007/978-1-4471-1575-5, DOI 10.1007/978-1-4471-1575-5]
  • [8] Transmitted resonance in a coupled system
    Coccolo, Mattia
    Sanjuan, Miguel A. F.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 135
  • [9] Fractional damping induces resonant behavior in the Duffing oscillator
    Coccolo, Mattia
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 133
  • [10] Classical and quantum position-dependent mass harmonic oscillators
    Cruz, S. Cruz y
    Negro, J.
    Nieto, L. M.
    [J]. PHYSICS LETTERS A, 2007, 369 (5-6) : 400 - 406