Unlocking thermochemical CO2/H2O 2 /H 2 O splitting by understanding the solid-state enthalpy and entropy of material reduction process

被引:0
作者
Chen, Biduan [1 ]
Yang, Hui [1 ]
Dong, Quanchi [1 ]
Tong, Lige [1 ,2 ]
Ding, Yulong [1 ,3 ]
Wang, Li [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing 100083, Peoples R China
[2] Beijing Engn Res Ctr Energy Saving & Environm Prot, Beijing 100083, Peoples R China
[3] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, England
基金
英国工程与自然科学研究理事会;
关键词
Thermochemical cycle; Splitting material; Solid-state entropy; Thermodynamic; Optimization; LANTHANUM MANGANITE PEROVSKITES; CA/SR A-SITE; B-SITE; EFFICIENCY; CONVERSION; CYCLES; REDOX; CERIA; H2O; CO2;
D O I
10.1016/j.ijhydene.2024.08.265
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-step redox thermochemical cycles, capable of directly converting CO2 2 and H2O 2 O respectively into CO and H2, 2 , offer a promising synthesis route towards green carbon-neutral fuels. The performance of such two-step cycles depends highly on the thermodynamic properties of splitting materials, particularly the solid-state enthalpy ( Delta h solid ) and entropy ( Delta s solid ) changes during the reduction process. Here, we report an investigation into the roles of the Delta h solid and Delta s solid . We shall show that a high Delta s solid relaxes both reduction temperature and oxygen pressure, but increases oxidant consumption. Conversely, an increase in Delta h solid enhances reduction resistance while promotes oxidation reactions. There are therefore no perfect materials, and a trade-off is needed for an optimal solution. We also defined a thermodynamic region based on Delta h solid and Delta s solid and typical operating conditions, and showed that higher values of both Delta h solid and Delta s solid provided a larger reaction space. While lower Delta h solid and negative Delta s solid may be more suitable for isothermal cycles. Our analyses also suggest future efforts in searching for splitting materials with a high Delta s solid within an appropriate range of Delta h solid (280-460 - 460 kJ/ mol).
引用
收藏
页码:1058 / 1067
页数:10
相关论文
共 46 条
[1]   Isothermal redox for H2O and CO2 splitting - A review and perspective [J].
Al-Shankiti, Ibraheam ;
Ehrhart, Brian D. ;
Weimer, Alan W. .
SOLAR ENERGY, 2017, 156 :21-29
[2]   The future of energy supply: Challenges and opportunities [J].
Armaroli, Nicola ;
Balzani, Vincenzo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (1-2) :52-66
[3]   Photochemical conversion of solar energy [J].
Balzani, Vincenzo ;
Credi, Alberto ;
Venturi, Margherita .
CHEMSUSCHEM, 2008, 1 (1-2) :26-58
[4]  
Bayon A, 2021, ADV CHEM ENG, V58, P55, DOI 10.1016/bs.ache.2021.10.006
[5]   Operational Limits of Redox Metal Oxides Performing Thermochemical Water Splitting [J].
Bayon, Alicia ;
de la Calle, Alberto ;
Stechel, Ellen B. ;
Muhich, Christopher .
ENERGY TECHNOLOGY, 2022, 10 (01)
[6]   Experimental, computational and thermodynamic studies in perovskites metal oxides for thermochemical fuel production: A review [J].
Bayon, Alicia ;
de la Calle, Alberto ;
Ghose, Krishna Kamol ;
Page, Alister ;
McNaughton, Robbie .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (23) :12653-12679
[7]   Thermodynamic assessment of the solar-to-fuel performance of La0.6Sr0.4Mn1-yCryO3-δ perovskite solid solution series [J].
Bork, Alexander H. ;
Povoden-Karadeniz, Erwin ;
Carrillo, Alfonso J. ;
Rupp, Jennifer L. M. .
ACTA MATERIALIA, 2019, 178 :163-172
[8]   Modifying La0.6Sr0.4MnO3 Perovskites with Cr Incorporation for Fast Isothermal CO2-Splitting Kinetics in Solar-Driven Thermochemical Cycles [J].
Carrillo, Alfonso J. ;
Bork, Alexander H. ;
Moser, Thierry ;
Sediva, Eva ;
Hood, Zachary D. ;
Rupp, Jennifer L. M. .
ADVANCED ENERGY MATERIALS, 2019, 9 (28)
[9]   Advances and trends in redox materials for solar thermochemical fuel production [J].
Carrillo, Richard J. ;
Scheffe, Jonathan R. .
SOLAR ENERGY, 2017, 156 :3-20
[10]   Thermochemical splitting of CO2 on perovskites for CO production - A review [J].
Chen, Biduan ;
Kildahl, Harriet ;
Yang, Hui ;
Ding, Yulong ;
Tong, Lige ;
Wang, Li .
JOURNAL OF ENERGY CHEMISTRY, 2024, 90 :464-485