Selective impact of three homogenous polysaccharides with different structural characteristics from Grifola frondosa on human gut microbial composition and the structure-activity relationship

被引:9
作者
Bai, Guangjian [1 ]
Xie, Yizhen [1 ,2 ]
Gao, Xiong [1 ]
Xiao, Chun [1 ]
Yong, Tianqiao [1 ]
Huang, Longhua [1 ]
Cai, Manjun [1 ]
Liu, Yuanchao [1 ]
Hu, Huiping [1 ]
Chen, Shaodan [1 ]
机构
[1] Guangdong Acad Sci, Guangdong Prov Key Lab Microbial Safety & Hlth, State Key Lab Appl Microbiol Southern China, Inst Microbiol,Natl Hlth Commiss Sci & Technol Inn, Guangzhou, Peoples R China
[2] Guangdong Yuewei Edible Fungi Co Ltd, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Grifola frondosa polysaccharides; Structural characterization; Structure -activity relationship; Human gut microbiota; Fermentation; Short -chain fatty acids; IN-VITRO; FERMENTATION; MUSHROOMS; DECTIN-1;
D O I
10.1016/j.ijbiomac.2024.132143
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Natural polysaccharides interact with gut microbes to enhance human well-being. Grifola frondosa is a polysaccharides-rich edible and medicinal mushroom. The prebiotic potential of G. frondosa polysaccharides has been explored in recent years, however, the relationship between their various structural features and prebiotic activities is poorly understood. In this study, three homogenous polysaccharides GFP10, GFP21 and GFP22 having different molecular weights (Mw), monosaccharide compositions and glycosidic linkages were purified from G. frondosa, and their effects on intestinal microbial composition were compared. GFP10 was a fucomannogalactan with an Mw of 23.0 kDa, and it selectively inhibited Enterobacter, while GFP21 was a fucomannogalactoglucan with an Mw of 18.6 kDa, and it stimulated Catenibacterium. GFP22 was a 4.9 kDa mannoglucan that selectively inhibited Klebsiella and boosted Bifidobacterium, Catenibacterium and Phascolarctobacterium, and prominently promoted the production of short-chain fatty acids (SCFAs). The selective modulation of gut microbiota by polysaccharides was structure-dependent. A relatively lower Mw and a high proportion of glycosidic linkages like T-Glcp, 1,3-Glcp, 1,3,6-Glcp and 1,4-Glcp might be more easily utilized to produce SCFAs and beneficial for the proliferation of Catenibacterium and Phascolarctobacterium. This research provided a valuable resource for further exploring the structure-activity relationship and prebiotic activity of G. frondosa polysaccharides.
引用
收藏
页数:11
相关论文
共 58 条
[31]   Anti-obesogenic and antidiabetic effects of plants and mushrooms [J].
Martel, Jan ;
Ojcius, David M. ;
Chang, Chih-Jung ;
Lin, Chuan-Sheng ;
Lu, Chia-Chen ;
Ko, Yun-Fei ;
Tseng, Shun-Fu ;
Lai, Hsin-Chih ;
Young, John D. .
NATURE REVIEWS ENDOCRINOLOGY, 2017, 13 (03) :149-160
[32]   Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders [J].
Metwaly, Amira ;
Reitmeier, Sandra ;
Haller, Dirk .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2022, 19 (06) :383-397
[33]   Anti-inflammatory properties of edible mushrooms: A review [J].
Muszynska, Bozena ;
Grzywacz-Kisielewska, Agata ;
Kala, Katarzyna ;
Gdula-Argasinska, Joanna .
FOOD CHEMISTRY, 2018, 243 :373-381
[34]   Complex pectin metabolism by gut bacteria reveals novel catalytic functions [J].
Ndeh, Didier ;
Rogowski, Artur ;
Cartmell, Alan ;
Luis, Ana S. ;
Basle, Arnaud ;
Gray, Joseph ;
Venditto, Immacolata ;
Briggs, Jonathon ;
Zhang, Xiaoyang ;
Labourel, Aurore ;
Terrapon, Nicolas ;
Buffetto, Fanny ;
Nepogodiev, Sergey ;
Xiao, Yao ;
Field, Robert A. ;
Zhu, Yanping ;
O'Neill, Malcolm A. ;
Urbanowicz, Breeanna R. ;
York, William S. ;
Davies, Gideon J. ;
Abbott, D. Wade ;
Ralet, Marie-Christine ;
Martens, Eric C. ;
Henrissat, Bernard ;
Gilbert, Harry J. .
NATURE, 2017, 544 (7648) :65-+
[35]  
Niu KX, 2022, FOOD FUNCT, V13, P6934, DOI [10.1039/d2fo01069k, 10.1039/D2FO01069K]
[36]   Sugarcane-Peanut Intercropping System Enhances Bacteria Abundance, Diversity, and Sugarcane Parameters in Rhizospheric and Bulk Soils [J].
Pang, Ziqin ;
Fallah, Nyumah ;
Weng, Peiying ;
Zhou, Yongmei ;
Tang, Xiumei ;
Tayyab, Muhammad ;
Liu, Yueming ;
Liu, Qiang ;
Xiao, Yijie ;
Hu, Chaohua ;
Kan, Yongjun ;
Lin, Wenxiong ;
Yuan, Zhaonian .
FRONTIERS IN MICROBIOLOGY, 2022, 12
[37]   Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia [J].
Perez-Jaramillo, Juan E. ;
de Hollander, Mattias ;
Ramirez, Camilo A. ;
Mendes, Rodrigo ;
Raaijmakers, Jos M. ;
Carrion, Victor J. .
MICROBIOME, 2019, 7 (01)
[38]   Differences in Gut Microbiota in Patients With vs Without Inflammatory Bowel Diseases: A Systematic Review [J].
Pittayanon, Rapat ;
Lau, Jennifer T. ;
Leontiadis, Grigorios I. ;
Tse, Frances ;
Yuan, Yuhong ;
Surette, Michael ;
Moayyedi, Paul .
GASTROENTEROLOGY, 2020, 158 (04) :930-+
[39]   Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells [J].
Ren, Li ;
Zhang, Jie ;
Zhang, Tiehua .
FOOD CHEMISTRY, 2021, 340
[40]   Metabolism of a hybrid algal galactan by members of the human gut microbiome [J].
Robb, Craig S. ;
Hobbs, Joanne K. ;
Pluvinage, Benjamin ;
Reintjes, Greta ;
Klassen, Leeann ;
Monteith, Stephanie ;
Giljan, Greta ;
Amundsen, Carolyn ;
Vickers, Chelsea ;
Hettle, Andrew G. ;
Hills, Rory ;
Nitin ;
Xing, Xiaohui ;
Montina, Tony ;
Zandberg, Wesley F. ;
Abbott, D. Wade ;
Boraston, Alisdair B. .
NATURE CHEMICAL BIOLOGY, 2022, 18 (05) :501-+