Development and Validation of a Quantitative Coronary CT Angiography Model for Diagnosis of Vessel-Specific Coronary Ischemia

被引:9
作者
Nurmohamed, Nick S. [1 ,2 ,3 ]
Danad, Ibrahim [1 ,4 ]
Jukema, Ruurt A. [1 ]
de Winter, Ruben W. [1 ]
de Groot, Robin J. [1 ]
Driessen, Roel S. [1 ]
Bom, Michiel J. [1 ]
van Diemen, Pepijn [1 ]
Pontone, Gianluca [3 ,5 ]
Andreini, Daniele [6 ]
Chang, Hyuk-Jae [7 ,8 ]
Katz, Richard J. [3 ]
Stroes, Erik S. G. [2 ]
Wang, Hao [9 ]
Chan, Chung [9 ]
Crabtree, Tami [9 ]
Aquino, Melissa [9 ]
Min, James K. [9 ]
Earls, James P. [3 ,9 ]
Bax, Jeroen J. [10 ]
Choi, Andrew D. [3 ]
Knaapen, Paul [1 ]
van Rosendael, Alexander R. [10 ]
机构
[1] Vrije Univ Amsterdam, Amsterdam UMC, Dept Cardiol, Amsterdam, Netherlands
[2] Univ Amsterdam, Dept Vasc Med, Amsterdam UMC, Amsterdam, Netherlands
[3] George Washington Univ, Sch Med, Div Cardiol, Washington, DC USA
[4] Univ Med Ctr Utrecht, Dept Cardiol, Utrecht, Netherlands
[5] IRCCS, Ctr Cardiol Monzino, Dept Cardiovasc Imaging, Milan, Italy
[6] Univ Milan, Div Univ Cardiol, IRCCS Osped Galeazzi St Ambrogio, Dept Biomed & Clin Sci, Milan, Italy
[7] Yonsei Univ, Yonsei Univ Hlth Syst, Severance Cardiovasc Hosp, Coll Med,Div Cardiol, Seoul, South Korea
[8] Yonsei Univ, Yonsei Univ Hlth Syst, Severance Biomed Sci Inst, Coll Med, Seoul, South Korea
[9] Cleerly Inc, Denver, CO USA
[10] Leiden Univ, Med Ctr, Dept Cardiol, Leiden, Netherlands
关键词
artificial fi cial intelligence; atherosclerosis; coronary computed tomography angiography; coronary ischemia; stress testing; FRACTIONAL FLOW RESERVE; COMPUTED-TOMOGRAPHY ANGIOGRAPHY; ATHEROSCLEROTIC PLAQUE CHARACTERISTICS; ARTERY-DISEASE; PROGNOSTIC VALUE; BLOOD-FLOW; SEVERITY; STENOSIS; HYBRID; FAME;
D O I
10.1016/j.jcmg.2024.01.007
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Noninvasive stress testing is commonly used for detection of coronary ischemia but possesses variable accuracy and may result in excessive health care costs. Objectives This study aimed to derive and validate an artificial intelligence-guided quantitative coronary computed tomography angiography (AI-QCT) model for the diagnosis of coronary ischemia that integrates atherosclerosis and vascular morphology measures (AI-QCT(ISCHEMIA)) and to evaluate its prognostic utility for major adverse cardiovascular events (MACE). Methods A post hoc analysis of the CREDENCE (Computed Tomographic Evaluation of Atherosclerotic Determinants of Myocardial Ischemia) and PACIFIC-1 (Comparison of Coronary Computed Tomography Angiography, Single Photon Emission Computed Tomography [SPECT], Positron Emission Tomography [PET], and Hybrid Imaging for Diagnosis of Ischemic Heart Disease Determined by Fractional Flow Reserve) studies was performed. In both studies, symptomatic patients with suspected stable coronary artery disease had prospectively undergone coronary computed tomography angiography (CTA), myocardial perfusion imaging (MPI), SPECT, or PET, fractional flow reserve by CT (FFRCT), and invasive coronary angiography in conjunction with invasive FFR measurements. The AI-QCT(ISCHEMIA) model was developed in the derivation cohort of the CREDENCE study, and its diagnostic performance for coronary ischemia (FFR <= 0.80) was evaluated in the CREDENCE validation cohort and PACIFIC-1. Its prognostic value was investigated in PACIFIC-1. Results In CREDENCE validation (n = 305, age 64.4 +/- 9.8 years, 210 [69%] male), the diagnostic performance by area under the receiver-operating characteristics curve (AUC) on per-patient level was 0.80 (95% CI: 0.75-0.85) for AI-QCT(ISCHEMIA), 0.69 (95% CI: 0.63-0.74; P < 0.001) for FFRCT, and 0.65 (95% CI: 0.59-0.71; P < 0.001) for MPI. In PACIFIC-1 (n = 208, age 58.1 +/- 8.7 years, 132 [63%] male), the AUCs were 0.85 (95% CI: 0.79-0.91) for AI-QCT(ISCHEMIA), 0.78 (95% CI: 0.72-0.84; P = 0.037) for FFRCT, 0.89 (95% CI: 0.84-0.93; P = 0.262) for PET, and 0.72 (95% CI: 0.67-0.78; P < 0.001) for SPECT. Adjusted for clinical risk factors and coronary CTA-determined obstructive stenosis, a positive AI-QCT(ISCHEMIA) test was associated with aHR: 7.6 (95% CI: 1.2-47.0; P = 0.030) for MACE. Conclusions This newly developed coronary CTA-based ischemia model using coronary atherosclerosis and vascular morphology characteristics accurately diagnoses coronary ischemia by invasive FFR and provides robust prognostic utility for MACE beyond presence of stenosis.
引用
收藏
页码:894 / 906
页数:13
相关论文
共 36 条
  • [1] Lesion-Specific and Vessel-Related Determinants of Fractional Flow Reserve Beyond Coronary Artery Stenosis
    Ahmadi, Amir
    Leipsic, Jonathon
    Ovrehus, Kristian A.
    Gaur, Sara
    Bagiella, Emilia
    Ko, Brian
    Dey, Damini
    LaRocca, Gina
    Jensen, Jesper M.
    Botker, Hans Erik
    Achenbach, Stephan
    De Bruyne, Bernard
    Norgaard, Bjarne L.
    Narula, Jagat
    [J]. JACC-CARDIOVASCULAR IMAGING, 2018, 11 (04) : 521 - 530
  • [2] Association of Coronary Stenosis and Plaque Morphology With Fractional Flow Reserve and Outcomes
    Ahmadi, Amir
    Stone, Gregg W.
    Leipsic, Jonathon
    Serruys, Patrick W.
    Shaw, Leslee
    Hecht, Harvey
    Wong, Graham
    Norgaard, Bjarne Linde
    O'Gara, Patrick T.
    Chandrashekhar, Y.
    Narula, Jagat
    [J]. JAMA CARDIOLOGY, 2016, 1 (03) : 350 - 357
  • [3] Caruana R, 2005, P 22 INT C MACH LEAR, P625, DOI [DOI 10.1145/1102351.1102430, 10.1145/1102351.1102430]
  • [4] CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): A Multi-center, international study
    Choi, Andrew D.
    Marques, Hugo
    Kumar, Vishak
    Griffin, William F.
    Rahban, Habib
    Karlsberg, Ronald P.
    Zeman, Robert K.
    Katz, Richard J.
    Earls, James P.
    [J]. JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2021, 15 (06) : 470 - 476
  • [5] Comparison of Coronary CT Angiography, SPECT, PET, and Hybrid Imaging for Diagnosis of Ischemic Heart Disease Determined by Fractional Flow Reserve
    Danad, Ibrahim
    Raijmakers, Pieter G.
    Driessen, Roel S.
    Leipsic, Jonathon
    Raju, Rekha
    Naoum, Chris
    Knuuti, Juhani
    Maki, Maija
    Underwood, Richard S.
    Min, James K.
    Elmore, Kimberly
    Stuijfzand, Wynand J.
    van Royen, Niels
    Tulevski, Igor I.
    Somsen, Aernout G.
    Huisman, Marc C.
    van Lingen, Arthur A.
    Heymans, Martijn W.
    van de Ven, Peter M.
    van Kuijk, Cornelis
    Lammertsma, Adriaan A.
    van Rossum, Albert C.
    Knaapen, Paul
    [J]. JAMA CARDIOLOGY, 2017, 2 (10) : 1100 - 1107
  • [6] Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but "normal" coronary angiography
    De Bruyne, B
    Hersbach, F
    Pijls, NHJ
    Bartunek, J
    Bech, JW
    Heyndrickx, GR
    Gould, KL
    Wijns, W
    [J]. CIRCULATION, 2001, 104 (20) : 2401 - 2406
  • [7] Incremental prognostic value of hybrid [15O]H2O positron emission tomography-computed tomography: combining myocardial blood flow, coronary stenosis severity, and high-risk plaque morphology
    Driessen, Roel S.
    Bom, Michiel J.
    van Diemen, Pepijn A.
    Schumacher, Stefan P.
    Leonora, Remi M.
    Everaars, Henk
    van Rossum, Albert C.
    Raijmakers, Pieter G.
    van de Ven, Peter M.
    van Kuijk, Cornelis C.
    Lammertsma, Adriaan A.
    Knuuti, Juhani
    Ahmadi, Amir
    Min, James K.
    Leipsic, Jonathon A.
    Narula, Jagat
    Danad, Ibrahim
    Knaapen, Paul
    [J]. EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2020, 21 (10) : 1105 - 1113
  • [8] Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis
    Driessen, Roel S.
    Danad, Ibrahim
    Stuijfzand, Wijnand J.
    Raijmakers, Pieter G.
    Schumacher, Stefan P.
    van Diemen, Pepijn A.
    Leipsic, Jonathon A.
    Knuuti, Juhani
    Underwood, S. Richard
    van de Ven, Peter M.
    van Rossum, Albert C.
    Taylor, Charles A.
    Knaapen, Paul
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (02) : 161 - 173
  • [9] Patient-Centered Imaging Shared Decision Making for Cardiac Imaging Procedures With Exposure to Ionizing Radiation
    Einstein, Andrew J.
    Berman, Daniel S.
    Min, James K.
    Hendel, Robert C.
    Gerber, Thomas C.
    Carr, J. Jeffrey
    Cerqueira, Manuel D.
    Cullom, S. James
    DeKemp, Robert
    Dickert, Neal W.
    Dorbala, Sharmila
    Fazel, Reza
    Garcia, Ernest V.
    Gibbons, Raymond J.
    Halliburton, Sandra S.
    Hausleiter, Joerg
    Heller, Gary V.
    Jerome, Scott
    Lesser, John R.
    Raff, Gilbert L.
    Tilkemeier, Peter
    Williams, Kim A.
    Shaw, Leslee J.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 63 (15) : 1480 - 1489
  • [10] Wald-type rank tests: A GEE approach
    Fan, Chunpeng
    Zhang, Donghui
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 74 : 1 - 16