Linearly convergent nonoverlapping domain decomposition methods for quasilinear parabolic equations

被引:0
作者
Engstrom, Emil [1 ]
Hansen, Eskil [1 ]
机构
[1] Lund Univ, Ctr Math Sci, POB 118, S-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
Nonoverlapping domain decompositions; Quasilinear parabolic equations; Linear convergence; Time-dependent Steklov-Poincar & eacute; operators; Space-time finite elements; WAVE-FORM-RELAXATION; BOUNDARY VALUE-PROBLEMS; TIME SCHWARZ ALGORITHM; DIFFUSION-EQUATIONS;
D O I
10.1007/s10543-024-01038-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We prove linear convergence for a new family of modified Dirichlet-Neumann methods applied to quasilinear parabolic equations, as well as the convergence of the Robin-Robin method. Such nonoverlapping domain decomposition methods are commonly employed for the parallelization of partial differential equation solvers. Convergence has been extensively studied for elliptic equations, but in the case of parabolic equations there are hardly any convergence results that are not relying on strong regularity assumptions. Hence, we construct a new framework for analyzing domain decomposition methods applied to quasilinear parabolic problems, based on fractional time derivatives and time-dependent Steklov-Poincar & eacute; operators. The convergence analysis is conducted without assuming restrictive regularity assumptions on the solutions or the numerical iterates. We also prove that these continuous convergence results extend to the discrete case obtained when combining domain decompositions with space-time finite elements.
引用
收藏
页数:37
相关论文
共 38 条
  • [11] Gander M. J., 2015, Springer International Publishing, V51, P69, DOI [DOI 10.1007/978-3-319-23321-53, 10.1007/978-3-319-23321-53, 10.1007/978-3-319-23321-5_3, DOI 10.1007/978-3-319-23321-5_3]
  • [12] NON-OVERLAPPING SCHWARZ WAVEFORM-RELAXATION FOR NONLINEAR ADVECTION-DIFFUSION EQUATIONS
    Gander, Martin J.
    Lunowa, Stephan B.
    Rohde, Christian
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (01) : A49 - A73
  • [13] Gander MJ, 2006, SIAM J NUMER ANAL, V44, P699, DOI 10.1137/S0036142903425409
  • [14] Dirichlet-Neumann waveform relaxation methods for parabolic and hyperbolic problems in multiple subdomains
    Gander, Martin J.
    Kwok, Felix
    Mandal, Bankim C.
    [J]. BIT NUMERICAL MATHEMATICS, 2021, 61 (01) : 173 - 207
  • [15] Gander MJ, 2016, ELECTRON T NUMER ANA, V45, P424
  • [16] Space-time domain decomposition for parabolic problems
    Giladi, E
    Keller, HB
    [J]. NUMERISCHE MATHEMATIK, 2002, 93 (02) : 279 - 313
  • [17] OPTIMIZED SCHWARZ WAVEFORM RELAXATION AND DISCONTINUOUS GALERKIN TIME STEPPING FOR HETEROGENEOUS PROBLEMS
    Halpern, Laurence
    Japhet, Caroline
    Szeftel, Jeremie
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2588 - 2611
  • [18] Hytonen Tuomas, 2016, Martingales and Littlewood-Paley theory, volume63 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, VI
  • [19] King FrederickW., 2009, Encyclopedia of Mathematics and its Applications, V124
  • [20] Kufner A., 1977, Function Spaces