On Benchmarking Interactive Evolutionary Multiobjective Algorithms

被引:0
作者
Shavarani, Seyed Mahdi [1 ]
Lopez-Ibanez, Manuel [1 ]
Knowles, Joshua [2 ]
机构
[1] Univ Manchester, Alliance Manchester Business Sch, Manchester M13 9PL, England
[2] Schlumberger Cambridge Res Ltd, Automat & Planning Grp, Cambridge CB3 0EL, England
关键词
Optimization; Decision making; Benchmark testing; Psychology; Minimization; Mathematical models; Ethics; Design of experiments; interactive evolutionary multiobjective optimization; machine decision maker (MDM); performance assessment; GENETIC ALGORITHM; OPTIMIZATION; DECISION;
D O I
10.1109/TEVC.2023.3289872
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We carry out a detailed performance assessment of two interactive evolutionary multiobjective algorithms (EMOAs) using a machine decision maker (DM) that enables us to repeat experiments and study specific behaviors modeled after human DMs. Using the same set of benchmark test problems as in the original papers on these interactive EMOAs (in up to 10 objectives), we bring to light interesting effects when we use a machine DM (MDM) based on sigmoidal utility functions (UFs) that have support from the psychology literature (replacing the simpler UFs used in the original papers). Our MDM enables us to go further and simulate human biases and inconsistencies as well. Our results from this study, which is the most comprehensive assessment of multiple interactive EMOAs so far conducted, suggest that current well-known algorithms have shortcomings that need addressing. These results further demonstrate the value of improving the benchmarking of interactive EMOAs.
引用
收藏
页码:1084 / 1098
页数:15
相关论文
共 41 条
[1]   Assessing the Performance of Interactive Multiobjective Optimization Methods: A Survey [J].
Afsar, Bekir ;
Miettinen, Kaisa ;
Ruiz, Francisco .
ACM COMPUTING SURVEYS, 2021, 54 (04)
[2]  
[Anonymous], 1999, Eur. J. Oper. Res., V113, P643
[3]  
Battiti P., 2010, 8 INT C MET, P347
[4]   Brain-Computer Evolutionary Multiobjective Optimization: A Genetic Algorithm Adapting to the Decision Maker [J].
Battiti, Roberto ;
Passerini, Andrea .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (05) :671-687
[5]  
Belton V., Lecture Notes in Computer Science
[6]  
Bezerra LCT, 2018, EVOL COMPUT, V26, P621, DOI [10.1162/EVCO_a_00217, 10.1162/evco_a_00217]
[7]  
Biscani F, 2010, Arxiv, DOI arXiv:1004.3824
[8]  
Branke J, 2005, STUD FUZZ SOFT COMP, V167, P461
[9]  
Branke K., 2008, LectureNotes in Computer Science, V5252
[10]   Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods [J].
Brockhoff, Dimo ;
Zitzler, Eckart .
2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, :2086-2093