Computation of ultra-short-term prediction intervals of the power prosumption in active distribution networks☆ ☆

被引:0
|
作者
Grammatikos, Plouton [1 ]
Le Boudec, Jean-Yves [2 ]
Paolone, Mario [1 ]
Sossan, Fabrizio [3 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Engn, Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, Lausanne, Switzerland
[3] HES SO Valais Wallis, Sch Engn, Sion, Switzerland
关键词
Prosumption; Forecast; Prediction intervals; Electrical load; Microgrids; REAL-TIME CONTROL; GENERATION; REGRESSION;
D O I
10.1016/j.epsr.2024.110780
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microgrids and, in general, active distribution networks require ultra-short-term prediction, i.e., for sub- second time scales, for specific control decisions. Conventional forecasting methodologies are not effective at such time scales. To address this issue, we propose a non-parametric method for computing ultra short-term prediction intervals (PIs) of the power prosumption of generic electrical-distribution networks. The method groups historical observations into clusters according to the values of influential variables. It is applied either to the original or to the differentiated power-prosumption time series. The clusters are considered statistically representative pools of future realizations of power prosumption (or its derivative). They are used to determine empirical PDFs and, by extracting the quantiles, to deliver PIs for respective arbitrary confidence levels. The models are validated a posteriori by carrying out a performance analysis that uses experimentally observed power-prosumption for different building types, thus allowing the identification of the dominant model.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] COMBINED ULTRA-SHORT-TERM POWER PREDICTION FOR WIND POWER HYDROGEN PRODUCTION TECHNOLOGY
    Zhao Y.
    Zhao H.
    Tan J.
    Zhang R.
    Jing Y.
    Sun H.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (03): : 162 - 168
  • [12] Gradient boosting dendritic network for ultra-short-term PV power prediction
    Wang, Chunsheng
    Li, Mutian
    Cao, Yuan
    Lu, Tianhao
    FRONTIERS IN ENERGY, 2024, 18 (6) : 785 - 798
  • [13] Ultra-short-term Prediction of Photovoltaic Power Generation Considering Cloud Cover
    Bai J.
    Dong C.
    Wang Z.
    Jiang J.
    Wang B.
    Liu G.
    Gaodianya Jishu/High Voltage Engineering, 2023, 49 (01): : 159 - 169
  • [14] Ultra-Short-Term Prediction of Wind Power Based on Sample Similarity Analysis
    Miao, Changxin
    Li, Hao
    Wang, Xia
    Li, Heng
    IEEE ACCESS, 2021, 9 : 72730 - 72742
  • [15] ULTRA-SHORT-TERM WIND POWER PREDICTION BASED ON VARIABLE FEATURE WEIGHT
    Wang X.
    Li S.
    Liu Y.
    Jing T.
    Gao X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (02): : 52 - 58
  • [16] Research on Ultra-Short-Term Wind Power Prediction Considering Source Relevance
    Sun, Yong
    Li, Zhenyuan
    Yu, Xinnan
    Li, Baoju
    Yang, Mao
    IEEE ACCESS, 2020, 8 : 147703 - 147710
  • [17] Ultra-short-term Prediction of Wind Power Considering Wind Farm Status
    Yang M.
    Zhou Y.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (05): : 1259 - 1267
  • [18] Ultra-short-term wind power prediction model based on long and short term memory network
    Zhang Q.
    Tang Z.
    Wang G.
    Yang Y.
    Tong Y.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (10): : 275 - 281
  • [19] Adaptive Ultra-short-term Wind Power Prediction Based on Risk Assessment
    Xue, Yusheng
    Yu, Chen
    Li, Kang
    Wen, Fushuan
    Ding, Yi
    Wu, Qiuwei
    Yang, Guangya
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2016, 2 (03): : 59 - 64
  • [20] Ultra-Short-Term Wind Power Prediction Using BP Neural Network
    Li, Jinxuan
    Mao, Jiandong
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 2001 - 2006