Application of Artificial Intelligence in Ophthalmology: An Updated Comprehensive Review

被引:7
作者
Hashemian, Hesam [1 ]
Peto, Tunde [2 ]
Ambrosio Jr, Renato [3 ,4 ,5 ,6 ,7 ,8 ]
Lengyel, Imre [9 ]
Kafieh, Rahele [10 ]
Noori, Ahmed Muhammed [11 ]
Khorrami-Nejad, Masoud [11 ,12 ]
机构
[1] Univ Tehran Med Sci, Farabi Eye Hosp, Translat Ophthalmol Res Ctr, Tehran, Iran
[2] Queens Univ Belfast, Sch Med Dent & Biomed Sci, Ctr Publ Hlth, Belfast, North Ireland
[3] Fed Univ State Rio Janeiro UNIRIO, Dept Ophthalmol, Rio De Janeiro, Brazil
[4] Fed Univ Sao Paulo UNIFESP, Dept Ophthalmol, Sao Paulo, Brazil
[5] Brazilian Study Grp Artificial Intelligence & Corn, Rio De Janeiro, Brazil
[6] Brazilian Study Grp Artificial Intelligence & Corn, Maceio, Brazil
[7] Rio Vis Hosp, Rio De Janeiro, Brazil
[8] Inst Olhos Renato Ambrosio, Rio De Janeiro, Brazil
[9] Queens Univ Belfast, Sch Med Dent & Biomed Sci, Belfast, North Ireland
[10] Univ Durham, Dept Engn, Durham, England
[11] Univ Tehran Med Sci, Sch Rehabil, Tehran 1148965111, Iran
[12] Al Mustaqbal Univ Coll, Dept Opt Tech, Hillah 51001, Iraq
关键词
Artificial Intelligence; Ophthalmology; Prognosis; Screening; Treatment; DRY EYE DISEASE; DIABETIC-RETINOPATHY; MACULAR DEGENERATION; AUTOMATED DETECTION; KERATOCONUS DETECTION; REFRACTIVE SURGERY; GLOBAL PREVALENCE; MACHINE; GLAUCOMA; TOMOGRAPHY;
D O I
10.18502/jovr.v19i3.15893
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Artificial intelligence (AI) holds immense promise for transforming ophthalmic care through automated screening, precision diagnostics, and optimized treatment planning. This paper reviews recent advances and challenges in applying AI techniques such as machine learning and deep learning to major eye diseases. In diabetic retinopathy, AI algorithms analyze retinal images to accurately identify lesions, which helps clinicians in ophthalmology practice. Systems like IDxDR (IDx Technologies Inc, USA) are FDA-approved for autonomous detection of referable diabetic retinopathy. For glaucoma, deep learning models assess optic nerve head morphology in fundus photographs to detect damage. In age-related macular degeneration, AI can quantify drusen and diagnose disease severity from both color fundus and optical coherence tomography images. AI has also been used in screening for retinopathy of prematurity, keratoconus, and dry eye disease. Beyond screening, AI can aid treatment decisions by forecasting disease progression and antiVEGF response. However, potential limitations such as the quality and diversity of training data, lack of rigorous clinical validation, and challenges in regulatory approval and clinician trust must be addressed for the widespread adoption of AI. Two other significant hurdles include the integration of AI into existing clinical workflows and ensuring transparency in AI decision- making processes. With continued research to address these limitations, AI promises to enable earlier diagnosis, optimized resource allocation, personalized treatment, and improved patient outcomes. Besides, synergistic human-AI systems could set a new standard for evidence-based, precise ophthalmic care.
引用
收藏
页码:354 / 367
页数:14
相关论文
共 130 条
[1]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[2]   Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning [J].
Abramoff, Michael David ;
Lou, Yiyue ;
Erginay, Ali ;
Clarida, Warren ;
Amelon, Ryan ;
Folk, James C. ;
Niemeijer, Meindert .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) :5200-5206
[3]   Artificial Intelligence in Dentistry: Past, Present, and Future [J].
Agrawal, Paridhi ;
Nikhade, Pradnya .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (07)
[4]   From Artificial Intelligence to Explainable Artificial Intelligence in Industry 4.0: A Survey on What, How, and Where [J].
Ahmed, Imran ;
Jeon, Gwanggil ;
Piccialli, Francesco .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (08) :5031-5042
[5]   Recent developments in age-related macular degeneration: a review [J].
Al-Zamil, Waseem M. ;
Yassin, Sanaa A. .
CLINICAL INTERVENTIONS IN AGING, 2017, 12 :1313-1330
[6]   Multimodal imaging, tele-education, and telemedicine in retinopathy of prematurity [J].
Almadhi, Nada H. ;
Dow, Eliot R. ;
Chan, R. V. Paul ;
Alsulaiman, Sulaiman M. .
MIDDLE EAST AFRICAN JOURNAL OF OPHTHALMOLOGY, 2022, 29 (01) :38-50
[7]   Revolutionizing healthcare: the role of artificial intelligence in clinical practice [J].
Alowais, Shuroug A. ;
Alghamdi, Sahar S. ;
Alsuhebany, Nada ;
Alqahtani, Tariq ;
Alshaya, Abdulrahman I. ;
Almohareb, Sumaya N. ;
Aldairem, Atheer ;
Alrashed, Mohammed ;
Bin Saleh, Khalid ;
Badreldin, Hisham A. ;
Al Yami, Majed S. ;
Al Harbi, Shmeylan ;
Albekairy, Abdulkareem M. .
BMC MEDICAL EDUCATION, 2023, 23 (01)
[8]   Optimized Artificial Intelligence for Enhanced Ectasia Detection Using Scheimpflug-Based Corneal Tomography and Biomechanical Data [J].
Ambrosio, Renato, Jr. ;
Machado, Aydano P. ;
Leao, Edileuza ;
Lyra, Joao Marcelo G. ;
Salomao, Marcella Q. ;
Esporcatte, Louise G. Pellegrino ;
Da Fonseca Filho, Joaob. R. ;
Ferreira-Meneses, Erica ;
Sena, Nelson B., Jr. ;
Haddad, Jorge S. ;
Neto, Alexandre Costa ;
De Almeida, Gildasio Castelo, Jr. ;
Roberts, Cynthia J. ;
Elsheikh, Ahmed ;
Vinciguerra, Riccardo ;
Vinciguerra, Paolo ;
Buhren, Jens ;
Kohnen, Thomas ;
Kezirian, Guy M. ;
Hafezi, Farhad ;
Hafezi, Nikki L. ;
Torres-Netto, Emilio A. ;
Lu, Nanji ;
Kang, David Sung Yong ;
Kermani, Omid ;
Koh, Shizuka ;
Padmanabhan, Prema ;
Taneri, Suphi ;
Trattler, William ;
Gualdi, Luca ;
Salgado-Borges, Jose ;
Faria-Correia, Fernando ;
Flockerzi, Elias ;
Seitz, Berthold ;
Jhanji, Vishal ;
Chan, Tommy C. Y. ;
Baptista, Pedro Manuel ;
Reinstein, Dan Z. ;
Archer, Timothy J. ;
Rocha, Karolinne M. ;
Waring, George O. ;
Krueger, Ronald R. ;
Dupps, William J. ;
Khoramnia, Ramin ;
Hashemi, Hassan ;
Asgari, Soheila ;
Momeni-Moghaddam, Hamed ;
Zarei-Ghanavati, Siamak ;
Shetty, Rohit ;
Khamar, Pooja .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2023, 251 :126-142
[9]   Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection [J].
Ambrosio, Renato, Jr. ;
Lopes, Bernardo T. ;
Faria-Correia, Fernando ;
Salomao, Marcella Q. ;
Buhren, Jens ;
Roberts, Cynthia J. ;
Elsheikh, Ahmed ;
Vinciguerra, Riccardo ;
Vinciguerra, Paolo .
JOURNAL OF REFRACTIVE SURGERY, 2017, 33 (07) :434-+
[10]   Screening for Ectasia Risk: What Are We Screening For and How Should We Screen For It? [J].
Ambrosio, Renato, Jr. ;
Randleman, J. Bradley .
JOURNAL OF REFRACTIVE SURGERY, 2013, 29 (04) :230-232