On convergence of a q-random coordinate constrained algorithm for non-convex problems

被引:0
作者
Ghaffari-Hadigheh, A. [1 ]
Sinjorgo, L. [2 ]
Sotirov, R. [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Tabriz, Iran
[2] Tilburg Univ, EOR Dept, Tilburg, Netherlands
关键词
Random coordinate descent algorithm; Convergence analysis; Densest k-subgraph problem; Eigenvalue complementarity problem; DESCENT ALGORITHMS; SIMPLEX;
D O I
10.1007/s10898-024-01429-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a random coordinate descent algorithm for optimizing a non-convex objective function subject to one linear constraint and simple bounds on the variables. Although it is common use to update only two random coordinates simultaneously in each iteration of a coordinate descent algorithm, our algorithm allows updating arbitrary number of coordinates. We provide a proof of convergence of the algorithm. The convergence rate of the algorithm improves when we update more coordinates per iteration. Numerical experiments on large scale instances of different optimization problems show the benefit of updating many coordinates simultaneously.
引用
收藏
页码:843 / 868
页数:26
相关论文
共 31 条