Feasibility of machine learning-based rice yield prediction in India at the district level using climate reanalysis and remote sensing data

被引:5
|
作者
De Clercq, Djavan [1 ]
Mahdi, Adam [1 ]
机构
[1] Univ Oxford, Oxford, England
关键词
Rice; Yield prediction; Machine learning; Climate reanalysis; Remote sensing; CROP YIELD; SATELLITE DATA; MODEL; DIFFUSION; HEALTH;
D O I
10.1016/j.agsy.2024.104099
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
CONTEXT: Yield forecasting, the science of predicting agricultural productivity before the crop harvest occurs, helps a wide range of stakeholders make better decisions around agricultural planning. OBJECTIVE: This study aims to investigate whether machine learning-based yield prediction models can capably predict Kharif season rice yields at the district level in India several months before the rice harvest takes place. METHODOLOGY: The methodology involved training 19 machine learning models such as CatBoost, LightGBM, Orthogonal Matching Pursuit, and Extremely Randomized Trees on 20 years of climate, satellite, and rice yield data across 247 of India's rice-producing districts. In addition to model-building, a dynamic dashboard was built understand how the reliability of rice yield predictions varies across district. RESULTS AND CONCLUSIONS: The results of the proof-of-concept machine learning pipeline demonstrated that rice yields can be predicted with a reasonable degree of accuracy, with out-of-sample R2, MAE, and MAPE performance of up to 0.82, 0.29, and 0.16 respectively. This performance outperformed test set performance reported in related literature on rice yield modelling in other contexts and countries. In addition, SHAP value analysis was conducted to infer both the importance and directional impact of the climate and remote sensing variables included in the model. Important features driving rice yields included temperature, soil water volume, and leaf area index. In particular, higher temperatures in August correlate with increased rice yields, particularly when the leaf area index in August is also high. Building on the results, a proof-of-concept dashboard was developed to allow users to easily explore which districts may experience a rise or fall in yield relative to the previous year. The dashboard show that the model may perform better in some regions than in others. For instance, the absolute percentage error for predicted versus actual yields ranged from an average of 7.1 % in districts in Uttarakhand to an average of 14.7 % in Uttar Pradesh. SIGNIFICANCE: This study underscores the potential for policymakers to consider scaling and operationalizing machine learning approaches to rice yield prediction in the context of agricultural early warning systems to deliver timely crop yield forecasts on a rolling basis throughout the season, thereby equipping agricultural decision-makers with the ability to make informed choices on irrigation scheduling, fertilizer application, and harvest planning to optimize crop output and resource use.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Tackling Food Insecurity Using Remote Sensing and Machine Learning-Based Crop Yield Prediction
    Shafi, Uferah
    Mumtaz, Rafia
    Anwar, Zahid
    Ajmal, Muhammad Muzyyab
    Khan, Muhammad Ajmal
    Mahmood, Zahid
    Qamar, Maqsood
    Jhanzab, Hafiz Muhammad
    IEEE ACCESS, 2023, 11 : 108640 - 108657
  • [2] Wheat Yield Prediction Using Machine Learning Method Based on UAV Remote Sensing Data
    Yang, Shurong
    Li, Lei
    Fei, Shuaipeng
    Yang, Mengjiao
    Tao, Zhiqiang
    Meng, Yaxiong
    Xiao, Yonggui
    DRONES, 2024, 8 (07)
  • [3] Machine and deep learning-based wheat yield prediction: the critical role of soil moisture and remote sensing data
    Shayan Hosseinpour
    Hemmatollah Pirdashti
    Danial Hosseinpour
    Hesam Mousavi
    Saeed Mohammadpour
    Modeling Earth Systems and Environment, 2025, 11 (4)
  • [4] Wheat Crop Field and Yield Prediction using Remote Sensing and Machine Learning
    Ayub, Maheen
    Khan, Najeed Ahmed
    Haider, Rana Zeeshan
    PROCEEDINGS OF 2ND IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (ICAI 2022), 2022, : 158 - 164
  • [5] Yield prediction in a peanut breeding program using remote sensing data and machine learning algorithms
    Pugh, N. Ace
    Young, Andrew
    Ojha, Manisha
    Emendack, Yves
    Sanchez, Jacobo
    Xin, Zhanguo
    Puppala, Naveen
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [6] Ensemble of Machine Learning Algorithms for Rice Grain Yield Prediction Using UAV-Based Remote Sensing
    Sarkar, Tapash Kumar
    Roy, Dilip Kumar
    Kang, Ye Seong
    Jun, Sae Rom
    Park, Jun Woo
    Ryu, Chan Seok
    JOURNAL OF BIOSYSTEMS ENGINEERING, 2024, 49 (01) : 1 - 19
  • [7] Peanut yield prediction using remote sensing and machine learning approaches based on phenological characteristics
    Hou, Xuehui
    Zhang, Junyong
    Luo, Xiubin
    Zeng, Shiwei
    Lu, Yan
    Wei, Qinggang
    Liu, Jia
    Feng, Wenjie
    Li, Qiaoyu
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 232
  • [8] Comparison of Climate Reanalysis and Remote-Sensing Data for Predicting Olive Phenology through Machine-Learning Methods
    Azpiroz, Izar
    Oses, Noelia
    Quartulli, Marco
    Olaizola, Igor G.
    Guidotti, Diego
    Marchi, Susanna
    REMOTE SENSING, 2021, 13 (06)
  • [9] Integrating climate and satellite remote sensing data for predicting county-level wheat yield in China using machine learning methods
    Zhou, Weimo
    Liu, Yujie
    Ata-Ul-Karim, Syed Tahir
    Ge, Quansheng
    Li, Xing
    Xiao, Jingfeng
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 111
  • [10] Integrating Remote Sensing and Soil Features for Enhanced Machine Learning-Based Corn Yield Prediction in the Southern US
    Sarkar, Sayantan
    Osorio Leyton, Javier M.
    Noa-Yarasca, Efrain
    Adhikari, Kabindra
    Hajda, Chad B.
    Smith, Douglas R.
    SENSORS, 2025, 25 (02)