Acid-Doping Induced Phase Separation for Shaping Phase Morphology and Enhancing Performance of Polymer Electrolyte Membranes

被引:0
作者
Jang, Joseph [1 ]
Kim, Do-Hyung [2 ]
Pak, Chanho [2 ]
Lee, Jae-Suk [1 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Gwangju 61005, South Korea
[2] Gwangju Inst Sci & Technol, Inst Integrated Technol, Grad Sch Energy Convergence, Gwangju 61005, South Korea
来源
ACS APPLIED ENERGY MATERIALS | 2024年 / 7卷 / 18期
关键词
fuel cells; polymer electrolyte membranes; phosphoric acid; phase separation; phosphoric acidretention; FUEL-CELL PERFORMANCE; ION-TRANSPORT; CONDUCTIVITY; COPOLYMERS;
D O I
10.1021/acsaem.4c01547
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The control of nanostructure and phase morphology within electrolytes is crucial in determining the performance of electrochemical devices, such as high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Random copolymers have been extensively utilized in this field due to their straightforward synthetic methods compared to block copolymers. However, achieving precise control over the nanostructure of these random copolymers is challenging, owing to the irregular distribution of hydrophilic and hydrophobic segments along their backbone. Herein, we introduce the acid doping-induced phase separation of random copolymers containing basic moieties driven by base-acid interaction with phosphoric acid (PA). Small-angle X-ray scattering analysis revealed that increased functionalization led to phase separation and inversion, indicative of dispersed PA distribution, impacting membrane morphology and phase dynamics. The phase morphology control improves proton conductivity and PA retention up to 130% and 260% increases, respectively, resulting in a significant enhancement in power density, a 20% boost to 200 mW/cm(2).
引用
收藏
页码:7964 / 7973
页数:10
相关论文
共 53 条
  • [21] Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells
    Krishnan, N. Nambi
    Joseph, Dickson
    Ngoc My Hanh Duong
    Konovalova, Anastasiia
    Jang, Jong Hyun
    Kim, Hyoung-Juhn
    Nam, Suk Woo
    Henkensmeier, Dirk
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2017, 544 : 416 - 424
  • [22] Maximization of high-temperature proton exchange membrane fuel cell performance with the optimum distribution of phosphoric acid
    Kwon, Yungjung
    Kim, Tae Young
    Yoo, Duck Young
    Hong, Suk-Gi
    Park, Jung Ock
    [J]. JOURNAL OF POWER SOURCES, 2009, 188 (02) : 463 - 467
  • [23] The energetics of phosphoric acid interactions reveals a new acid loss mechanism
    Lee, Albert S.
    Choe, Yoong-Kee
    Matanovic, Ivana
    Kim, Yu Seung
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (16) : 9867 - 9876
  • [24] Lee KS, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.120, 10.1038/NENERGY.2016.120]
  • [25] Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers
    Li, Dongguo
    Park, Eun Joo
    Zhu, Wenlei
    Shi, Qiurong
    Zhou, Yang
    Tian, Hangyu
    Lin, Yuehe
    Serov, Alexey
    Zulevi, Barr
    Baca, Ehren Donel
    Fujimoto, Cy
    Chung, Hoon T.
    Kim, Yu Seung
    [J]. NATURE ENERGY, 2020, 5 (05) : 378 - 385
  • [26] Li Q., 2016, HIGH TEMPERATUREPOLY, P387, DOI [10.1007/978-3-319-17082-41, DOI 10.1007/978-3-319-17082-41]
  • [27] High temperature proton exchange membranes based on polybenzimidazoles for fuel cells
    Li, Qingfeng
    Jensen, Jens Oluf
    Savinell, Robert F.
    Bjerrum, Niels J.
    [J]. PROGRESS IN POLYMER SCIENCE, 2009, 34 (05) : 449 - 477
  • [28] Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries
    Li, Song
    Zhang, Shi-Qi
    Shen, Lu
    Liu, Qi
    Ma, Jia-Bin
    Lv, Wei
    He, Yan-Bing
    Yang, Quan-Hong
    [J]. ADVANCED SCIENCE, 2020, 7 (05)
  • [29] Modifying the Electrocatalyst-Ionomer Interface via Sulfonated Poly(ionic liquid) Block Copolymers to Enable High-Performance Polymer Electrolyte Fuel Cells
    Li, Yawei
    Van Cleve, Tim
    Sun, Rui
    Gawas, Ramchandra
    Wang, Guanxiong
    Tang, Maureen
    Elabd, Yossef A.
    Snyder, Joshua
    Neyerlin, K. C.
    [J]. ACS ENERGY LETTERS, 2020, 5 (06): : 1726 - 1731
  • [30] High Temperature Polymer Electrolyte Membrane Fuel Cells with High Phosphoric Acid Retention
    Lim, Katie H.
    Matanovic, Ivana
    Maurya, Sandip
    Kim, Youngkwang
    De Castro, Emory S.
    Jang, Ji-Hoon
    Park, Hyounmyung
    Kim, Yu Seung
    [J]. ACS ENERGY LETTERS, 2022, 8 (01) : 529 - 536