Multi-Sensor data fusion in intelligent fault diagnosis of rotating machines: A comprehensive review

被引:31
|
作者
Kibrete, Fasikaw [1 ,2 ]
Woldemichael, Dereje Engida [1 ,2 ]
Gebremedhen, Hailu Shimels [1 ,2 ]
机构
[1] Addis Ababa Sci & Technol Univ, Coll Engn, Dept Mech Engn, POB 16417, Addis Ababa, Ethiopia
[2] Addis Ababa Sci & Technol Univ, Artificial Intelligence & Robot Ctr Excellence, POB 16417, Addis Ababa, Ethiopia
关键词
Condition monitoring; Intelligent fault diagnosis; Multi-sensor data fusion; Rotating machines; Sensor integration; INFORMATION FUSION; NEURAL-NETWORK; KALMAN FILTER; BEARING FAULTS; VIBRATION; CLASSIFICATION; AUTOENCODER; ALGORITHM; SYSTEM;
D O I
10.1016/j.measurement.2024.114658
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rotating machines are extensively utilized in diverse industries, and their malfunctions can result in significant financial consequences and safety risks. Consequently, there has been growing research interest in the intelligent fault diagnosis of rotating machines, particularly through the utilization of multi-sensor condition monitoring data. However, a comprehensive review focusing on multi-sensor data fusion methods is lacking. To bridge this gap, this paper provides a comprehensive analysis of the existing literature on the application of multi-sensor data fusion techniques to diagnose faults in rotating machines. Basic concepts of multi-sensor data fusion are first provided, establishing a robust foundation for subsequent discussions. The review then provides an in-depth analysis of the applications of multi-sensor data fusion in intelligent diagnosis for rotating machines. Furthermore, this review paper highlights the current challenges encountered in multi-sensor data fusion for intelligent fault diagnosis of rotating machines. By considering these challenges and consolidating knowledge from various sources, this paper proposes future research directions in this field. This review article serves as a valuable resource for researchers, practitioners, and decision-makers in the domain of intelligent fault diagnosis of rotating machines. The review provides comprehensive insights into the latest advancements of multi-sensor data fusion techniques and guiding future research directions in the measurement sciences.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A scoping review on multi-fault diagnosis of industrial rotating machines using multi-sensor data fusion
    Gawde, Shreyas
    Patil, Shruti
    Kumar, Satish
    Kotecha, Ketan
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (05) : 4711 - 4764
  • [2] Fault Diagnosis of Brake Train Based on Multi-Sensor Data Fusion
    Jin, Yongze
    Xie, Guo
    Li, Yankai
    Zhang, Xiaohui
    Han, Ning
    Shangguan, Anqi
    Chen, Wenbin
    SENSORS, 2021, 21 (13)
  • [3] Investigation of a multi-sensor data fusion technique for the fault diagnosis of gearboxes
    He, Jun
    Yang, Shixi
    Papatheou, Evangelos
    Xiong, Xin
    Wan, Haibo
    Gu, Xiwen
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2019, 233 (13) : 4764 - 4775
  • [4] Application of multi-sensor information fusion in fault diagnosis of rotating machinery
    Guan, Ke
    Mei, Tao
    Wang, Deji
    2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 425 - 429
  • [5] A novel multi-sensor local and global feature fusion architecture based on multi-sensor sparse Transformer for intelligent fault diagnosis
    Yang, Zhenkun
    Li, Gang
    Xue, Gui
    He, Bin
    Song, Yue
    Li, Xin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [6] Multi-branch convolutional attention network for multi-sensor feature fusion in intelligent fault diagnosis of rotating machinery
    Wu, Ke
    Li, Zirui
    Chen, Chong
    Song, Zhenguo
    Wu, Jun
    QUALITY ENGINEERING, 2024, 36 (03) : 609 - 623
  • [7] A New Engine Fault Diagnosis Method Based on Multi-Sensor Data Fusion
    Jiang, Wen
    Hu, Weiwei
    Xie, Chunhe
    APPLIED SCIENCES-BASEL, 2017, 7 (03):
  • [8] Fault Diagnosis of Induction Motor based on Multi-sensor Data Fusion
    Li Shu-ying
    Tian Mu-qin
    Xue Lei
    MATERIAL SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING TECHNOLOGY II, 2014, 651-653 : 729 - +
  • [9] Intelligent fault diagnosis based on multi-sensor data fusion and multi-scale dual attention enhanced network
    Zhang, Weizhong
    Yan, Xiaoan
    Ye, Maoyou
    Hua, Xing
    Jiang, Dong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (02)
  • [10] Edge Computing: A Promising Framework for Real-Time Fault Diagnosis and Dynamic Control of Rotating Machines Using Multi-Sensor Data
    Qian, Gang
    Lu, Siliang
    Pan, Donghui
    Tang, Huasong
    Liu, Yongbin
    Wang, Qunjing
    IEEE SENSORS JOURNAL, 2019, 19 (11) : 4211 - 4220