Scalable simulation of nonequilibrium quantum dynamics via classically optimized unitary circuits

被引:1
作者
Causer, Luke [1 ,2 ]
Jung, Felix [3 ]
Mitra, Asimpunya [4 ,5 ]
Pollmann, Frank [3 ,6 ]
Gammon-Smith, Adam [1 ,2 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[2] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sys, Nottingham NG7 2RD, England
[3] Tech Univ Munich, Dept Phys, TFK, James Franck Str 1, D-85748 Garching, Germany
[4] Indian Inst Technol Kharagpur, Dept Phys, Kharagpur 721302, India
[5] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[6] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 03期
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
EXACT DIAGONALIZATION; EIGENSOLVER; MECHANICS; SYSTEMS;
D O I
10.1103/PhysRevResearch.6.033062
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The advent of near-term digital quantum computers could offer us an exciting opportunity to investigate quantum many-body phenomena beyond that of classical computing. To make the best use of the hardware available, it is paramount that we have methods that accurately simulate Hamiltonian dynamics for limited circuit depths. In this paper, we propose a method to classically optimize unitary brickwall circuits to approximate quantum time evolution operators. Our method is scalable in system size through the use of tensor networks. We demonstrate that, for various three-body Hamiltonians, our approach produces quantum circuits that can outperform trotterization in both their accuracy and the quantum circuit depth needed to implement the dynamics, with the exact details being dependent on the Hamiltonian. We also explain how to choose an optimal time step that minimizes the combined errors of the quantum device and the brickwall circuit approximation.
引用
收藏
页数:19
相关论文
共 99 条
[1]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[2]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[3]   Time evolution of uniform sequential circuits [J].
Astrakhantsev N. ;
Lin S.-H. ;
Pollmann F. ;
Smith A. .
Physical Review Research, 2023, 5 (03)
[4]   Quantum Algorithms for Quantum Chemistry and Quantum Materials Science [J].
Bauer, Bela ;
Bravyi, Sergey ;
Motta, Mario ;
Chan, Garnet Kin-Lic .
CHEMICAL REVIEWS, 2020, 120 (22) :12685-12717
[5]   Hardware-efficient variational quantum algorithms for time evolution [J].
Benedetti, Marcello ;
Fiorentini, Mattia ;
Lubasch, Michael .
PHYSICAL REVIEW RESEARCH, 2021, 3 (03)
[6]   Exact Quench Dynamics of the Floquet Quantum East Model at the Deterministic Point [J].
Bertini, Bruno ;
De Fazio, Cecilia ;
Garrahan, Juan P. ;
Klobas, Katja .
PHYSICAL REVIEW LETTERS, 2024, 132 (12)
[7]   Exact spectral statistics in strongly localized circuits [J].
Bertini, Bruno ;
Kos, Pavel ;
Prosen, Tomaz .
PHYSICAL REVIEW B, 2022, 105 (16)
[8]   Operator entanglement in local quantum circuits I: Chaotic dual-unitary circuits [J].
Bertini, Bruno ;
Kos, Pavel ;
Prosen, Tomaz .
SCIPOST PHYSICS, 2020, 8 (04)
[9]   Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos [J].
Bertini, Bruno ;
Kos, Pavel ;
Prosen, Tomaz .
PHYSICAL REVIEW LETTERS, 2018, 121 (26)
[10]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202