Biohydrogen Production from Methane-Derived Biomass of Methanotroph and Microalgae by Clostridium

被引:1
作者
Sang, Yuxuan [1 ,2 ,3 ]
Xie, Zhangzhang [2 ]
Li, Liangyan [2 ,4 ]
Wang, Oumei [2 ]
Zheng, Shiling [1 ]
Liu, Fanghua [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Yantai Inst Coastal Zone Res YIC, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Shandong Key Lab Coastal Environm Proc,YICCAS, Yantai 264003, Peoples R China
[2] Guangdong Acad Sci, Inst Ecoenvironm & Soil Sci, Natl Reg Joint Engn Res Ctr Soil Pollut Control &, Guangdong Key Lab Integrated Agroenvironm Pollut C, Guangzhou 510650, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Nankai Univ, Coll Life Sci, State Key Lab Med Chem Biol, Tianjin 300350, Peoples R China
[5] Qingdao Marine Sci & Technol Ctr, Lab Marine Biol & Biotechnol, Qingdao 266237, Peoples R China
来源
FERMENTATION-BASEL | 2024年 / 10卷 / 08期
基金
中国国家自然科学基金;
关键词
biohydrogen; methane; Clostridium; microalgae; methanotrophs; FERMENTATIVE HYDROGEN-PRODUCTION; BUTYRIC-ACID; PHOTO-FERMENTATION; LACTIC-ACID; DARK; TYROBUTYRICUM; PROTEIN;
D O I
10.3390/fermentation10080383
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Methane, a potent greenhouse gas, represents both a challenge and an opportunity in the quest for sustainable energy. This work investigates the biotechnology for converting methane into clean, renewable hydrogen. The co-culture of Chlorella sacchrarophila FACHB 4 and Methylomonas sp. HYX-M1 was demonstrated to completely convert 1 mmol of methane to biomass within 96 h. After acid digestion of such biomass, up to 45.05 mu mol of glucose, 4.07 mu mol of xylose, and 26.5 mu mol of lactic acid were obtained. Both Clostridium pasteurianum DSM525 and Clostridium sp. BZ-1 can utilize those sugars to produce hydrogen without any additional organic carbon sources. The higher light intensity in methane oxidation co-culture systems resulted in higher hydrogen production, with the BZ-1 strain producing up to 14.00 mu mol of hydrogen, 8.19 mu mol of lactate, and 6.09 mu mol of butyrate from the co-culture biomass obtained at 12,000 lux. The results demonstrate that the co-culture biomass of microalgae and methanotroph has the potential to serve as a feedstock for dark fermentative hydrogen production. Our study highlights the complexities inherent in achieving efficient and complete methane-to-hydrogen conversion, positioning this biological approach as a pivotal yet demanding area of research for combating climate change and propelling the global energy transition.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Biohydrogen production with a degenerated strain of Clostridium acetobutylicum ATCC824 from Eichhornia crassipes biomass [J].
Aguirre, Paulina ;
German, Paola ;
Guerrero, Karlo .
BIOENERGY RESEARCH, 2024, 17 (03) :1770-1783
[22]   Biohydrogen production from pretreated lignocellulose by Clostridium thermocellum [J].
Jing-Rong Cheng ;
Ming-Jun Zhu .
Biotechnology and Bioprocess Engineering, 2016, 21 :87-94
[23]   Biofuels from microalgae: Lipid extraction and methane production from the residual biomass in a biorefinery approach [J].
Hernandez, D. ;
Solana, M. ;
Riano, B. ;
Garcia-Gonzalez, M. C. ;
Bertucco, A. .
BIORESOURCE TECHNOLOGY, 2014, 170 :370-378
[24]   Biohydrogen and methane production via a two-step process using an acid pretreated native microalgae consortium [J].
Carrillo-Reyes, Julian ;
Buitron, German .
BIORESOURCE TECHNOLOGY, 2016, 221 :324-330
[25]   Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells [J].
Efremenko, E. N. ;
Nikolskaya, A. B. ;
Lyagin, I. V. ;
Senko, O. V. ;
Makhlis, T. A. ;
Stepanov, N. A. ;
Maslova, O. V. ;
Mamedova, F. ;
Varfolomeev, S. D. .
BIORESOURCE TECHNOLOGY, 2012, 114 :342-348
[26]   Biohydrogen production from Euglena acus microalgae available in Bangladesh [J].
Mustafi, Nirendra Nath ;
Hossain, Md. Imran ;
Ahammad, Muhammad Faruq ;
Naz, Sabrina .
METHODSX, 2023, 10
[27]   Enhanced biohydrogen production from date seeds by Clostridium thermocellum ATCC 27405 [J].
Rambabu, K. ;
Show, Pau-Loke ;
Bharath, G. ;
Banat, Fawzi ;
Naushad, Mu ;
Chang, Jo-Shu .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (42) :22271-22280
[28]   Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion [J].
Khan, M. A. ;
Ngo, H. H. ;
Guo, W. S. ;
Liu, Y. ;
Nghiem, L. D. ;
Hai, F. I. ;
Deng, L. J. ;
Wang, J. ;
Wu, Y. .
BIORESOURCE TECHNOLOGY, 2016, 219 :738-748
[29]   Biohydrogen Production From Biomass Sources: Metabolic Pathways and Economic Analysis [J].
Ahmed, Shams Forruque ;
Rafa, Nazifa ;
Mofijur, M. ;
Badruddin, Irfan Anjum ;
Inayat, Abrar ;
Ali, Md Sawkat ;
Farrok, Omar ;
Khan, T. M. Yunus .
FRONTIERS IN ENERGY RESEARCH, 2021, 9 (09)
[30]   Potential for biohydrogen and methane production from olive pulp [J].
Gavala, HN ;
Skiadas, IV ;
Ahring, BK ;
Lyberatos, G .
WATER SCIENCE AND TECHNOLOGY, 2005, 52 (1-2) :209-215