A surrogate-assisted extended generative adversarial network for parameter optimization in free-form metasurface design

被引:3
作者
Dai, Manna [1 ]
Jiang, Yang [2 ]
Yang, Feng [1 ]
Chattoraj, Joyjit [1 ]
Xia, Yingzhi [1 ]
Xu, Xinxing [1 ]
Zhao, Weijiang [3 ,4 ]
Ha Dao, My [4 ]
Liu, Yong [1 ]
机构
[1] ASTAR, Comp & Intelligence Dept, Inst High Performance Comp, Singapore 138632, Singapore
[2] Shenzhen Univ, Shenzhen 518060, Peoples R China
[3] ASTAR, Elect & Photon Dept, Inst High Performance Comp, Singapore 138632, Singapore
[4] ASTAR, Fluid Dynam Dept, Inst High Performance Comp, Singapore 138632, Singapore
关键词
Fifth-generation (5G); Free-form metasurfaces; Generative adversarial network (GAN); Surrogate; Inverse design; LEARNING-BASED APPROACH;
D O I
10.1016/j.neunet.2024.106654
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Metasurfaces have widespread applications in fifth-generation (5G) microwave communication. Among the metasurface family, free-form metasurfaces excel in achieving intricate spectral responses compared to regular- shape counterparts. However, conventional numerical methods for free-form metasurfaces are time-consuming and demand specialized expertise. Alternatively, recent studies demonstrate that deep learning has great potential to accelerate and refine metasurface designs. Here, we present XGAN, an extended generative adversarial network (GAN) with a surrogate for high-quality free-form metasurface designs. The proposed surrogate provides a physical constraint to XGAN so that XGAN can accurately generate metasurfaces monolithically from input spectral responses. In comparative experiments involving 20000 free-form metasurface designs, XGAN achieves 0.9734 average accuracy and is 500 times faster than the conventional methodology. This method facilitates the metasurface library building for specific spectral responses and can be extended to various inverse design problems, including optical metamaterials, nanophotonic devices, and drug discovery.
引用
收藏
页数:10
相关论文
共 57 条
[1]   Multifunctional Metasurface Design with a Generative Adversarial Network [J].
An, Sensong ;
Zheng, Bowen ;
Tang, Hong ;
Shalaginov, Mikhail Y. ;
Zhou, Li ;
Li, Hang ;
Kang, Myungkoo ;
Richardson, Kathleen A. ;
Gu, Tian ;
Hu, Juejun ;
Fowler, Clayton ;
Zhang, Hualiang .
ADVANCED OPTICAL MATERIALS, 2021, 9 (05)
[2]   Deep learning modeling approach for metasurfaces with high degrees of freedom [J].
An, Sensong ;
Zheng, Bowen ;
Shalaginov, Mikhail Y. ;
Tang, Hong ;
Li, Hang ;
Zhou, Li ;
Ding, Jun ;
Agarwal, Anuradha Murthy ;
Rivero-Baleine, Clara ;
Kang, Myungkoo ;
Richardson, Kathleen A. ;
Gu, Tian ;
Hu, Juejun ;
Fowler, Clayton ;
Zhang, Hualiang .
OPTICS EXPRESS, 2020, 28 (21) :31932-31942
[3]  
Ba J, 2014, ACS SYM SER
[4]  
Chen X, 2016, 30 C NEURAL INFORM P, V29
[5]   Microwave Metasurface-based Lens Antennas for 5G and Beyond [J].
Chen, Zhi Ning ;
Li, Teng ;
Liu, Wei E. I. .
2020 14TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP 2020), 2020,
[6]   Large Optical Modulation of Dielectric Huygens' Metasurface Absorber [J].
Cheng, Hao-Yu ;
Ye, Ming-Jyun ;
Chen, Wei-Ruei ;
Yang, Chi-Yin ;
Chu, Shi-Wei ;
Chen, Kuo-Ping ;
Lin, Kung-Hsuan .
ADVANCED OPTICAL MATERIALS, 2023, 11 (10)
[7]   Embedding Arithmetic of Multimodal Queries for Image Retrieval [J].
Couairon, Guillaume ;
Douze, Matthijs ;
Cord, Matthieu ;
Schwenk, Holger .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, :4946-4954
[8]   Generative Adversarial Networks An overview [J].
Creswell, Antonia ;
White, Tom ;
Dumoulin, Vincent ;
Arulkumaran, Kai ;
Sengupta, Biswa ;
Bharath, Anil A. .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) :53-65
[9]   Coding metamaterials, digital metamaterials and programmable metamaterials [J].
Cui, Tie Jun ;
Qi, Mei Qing ;
Wan, Xiang ;
Zhao, Jie ;
Cheng, Qiang .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e218-e218
[10]  
CUTURI M., 2013, Advances in neural information processing systems, V2, P2292