THE GELFAND-PHILLIPS AND DUNFORD-PETTIS TYPE PROPERTIES IN BIMODULES OF MEASURABLE OPERATORS

被引:1
作者
Huang, Jinghao [1 ]
Nessipbayev, Yerlan [2 ,3 ]
Pliev, Marat [4 ,5 ,6 ]
Sukochev, Fedor [2 ,6 ]
机构
[1] HIT, Inst Adv Study Math, Harbin 150001, Peoples R China
[2] Univ New South Wales, Sch Math & Stat, Kensington 2052, Australia
[3] Inst Math & Math Modeling, Alma Ata 050010, Kazakhstan
[4] Russian Acad Sci, Southern Math Inst, Rus 362027, Romania
[5] Russian Acad Sci, North Caucasus Ctr Math Res, Vladikavkaz Sci Ctr, Vladikavkaz 362027, Russia
[6] North Ossetian State Univ, Vladikavkaz 362025, Russia
基金
澳大利亚研究理事会;
关键词
Noncommutative symmetric space; order continuous norm; Gelfand- Phillips space; WCG-space; (weak/strong) Dunford-Pettis property; SYMMETRIC-SPACES; WEAK COMPACTNESS; BANACH-SPACES; ASTERISK; DOMINATION; SCHUR; SETS;
D O I
10.1090/tran/9117
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We fully characterize noncommutative symmetric spaces E ( M , tau ) affiliated with a semifinite von Neumann algebra M equipped with a faithful normal semifinite trace tau on a (not necessarily separable) Hilbert space having the Gelfand-Phillips property and the WCG-property. The complete list of their relations with other classical structural properties (such as the Dunford- Pettis property, the Schur property and their variations) is given in the general setting of noncommutative symmetric spaces.
引用
收藏
页码:6097 / 6149
页数:53
相关论文
共 83 条
[1]  
Albiac F, 2006, GRAD TEXTS MATH, V233, P1
[2]  
Aliprantis C.D., 2006, Positive operators, DOI DOI 10.1007/978-1-4020-5008-4
[3]   STUCTURE OF WEAKLY COMPACT SETS IN BANACH SPACES [J].
AMIR, D ;
LINDENST.J .
ANNALS OF MATHEMATICS, 1968, 88 (01) :35-&
[4]  
Aqzzouz B, 2013, DEMONSTR MATH, V46, P165
[6]   Banach-Saks property in Marcinkiewicz spaces [J].
Astashkin, S. V. ;
Sukochev, F. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) :1231-1258
[7]   Cesaro mean convergence of martingale differences in rearrangement invariant spaces [J].
Astashkin, Sergey V. ;
Kalton, Nigel ;
Sukochev, Fyodor A. .
POSITIVITY, 2008, 12 (03) :387-406
[8]  
Astashkin SV, 2019, CONTEMP MATH, V733, P45, DOI 10.1090/conm/733/14732
[9]  
Bennett C., 1988, Interpolation of operators, V129
[10]  
BORWEIN J., 1997, ACTA MATH VIETNAM, V22, P53