The geometric Cauchy problem forrank-one submanifolds

被引:0
作者
Raffaelli, Matteo [1 ,2 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Kongens Lyngby, Denmark
[2] TU Wien, Inst Discrete Math & Geometry, A-1040 Vienna, Austria
关键词
BJORLING PROBLEM; SURFACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a smooth distribution D of m-dimensional planes along a smooth regular curve gamma in Rm+n, we consider the following problem: to find an m-dimensional rank-one submanifold of Rm+n, that is, an (m-1)-ruled submanifold with constant tangent space along the rulings, such that its tangent bundle along gamma coincides with D. In particular, we give sufficient conditions for the local well-posedness of the problem, together with a parametric description of the solution.
引用
收藏
页码:2575 / 2594
页数:20
相关论文
共 16 条
[1]   A D'Alembert Formula for Flat Surfaces in the 3-Sphere [J].
Aledo, Juan A. ;
Galvez, Jose A. ;
Mira, Pablo .
JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (02) :211-232
[2]  
Berndt J., 2016, SUBMANIFOLDS HOLONOM, DOI 10.1201/b19615
[3]   ON THE BJORLING PROBLEM FOR WILLMORE SURFACES [J].
Brander, David ;
Wang, Peng .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2018, 108 (03) :411-457
[4]  
Brander D, 2013, J DIFFER GEOM, V93, P37
[5]   VECTOR CROSS PRODUCTS [J].
BROWN, RB ;
GRAY, A .
COMMENTARII MATHEMATICI HELVETICI, 1967, 42 (03) :222-&
[6]   The Bjorling problem for minimal surfaces in a Lorentzian three-dimensional Lie group [J].
Cintra, Adriana A. ;
Mercuri, Francesco ;
Onnis, Irene I. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (01) :95-110
[7]  
DAJCZER M, 1985, J DIFFER GEOM, V22, P1
[8]  
do Carmo M. P., 1992, Differential Geometry of Curves and Surfaces, V1st
[9]  
Erbacher J., 1971, J. Differ. Geomet, V5, P333, DOI [10.4310/jdg/1214429997, DOI 10.4310/JDG/1214429997]