This study presents a novel massively high-throughput reinforcement learning (RL) framework specifically designed for addressing classic control problems, leveraging our proposed architecture and algorithms optimized for efficient concurrent computations on GPUs. Our research demonstrates the effectiveness of our methods in efficiently training RL agents across various classic control problems, encompassing both discrete and continuous domains, while achieving rapid and stable performance up to 10K concurrent environment instances. Furthermore, we observe that RL exploration with a large number of parallel instances significantly enhances the stability of updating a shared model. For instance, we show that the stability of Deep Deterministic Policy Gradient (DDPG) training can be achieved without requiring experience replay, as evidenced in our study.
机构:
Univ Calif San Diego, Mat Virtual Lab, Dept Nanoengn, 9500 Gilman Dr,Mail Code 0448, La Jolla, CA 92093 USAUniv Calif San Diego, Mat Virtual Lab, Dept Nanoengn, 9500 Gilman Dr,Mail Code 0448, La Jolla, CA 92093 USA
机构:
Arizona State Univ, Biodesign Inst, Ctr Mech Evolut, Tempe, AZ 85287 USAArizona State Univ, Biodesign Inst, Ctr Mech Evolut, Tempe, AZ 85287 USA
Brettner, Leandra
Eder, Rachel
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Biodesign Inst, Ctr Mech Evolut, Tempe, AZ 85287 USA
Arizona State Univ, Sch Life Sci, Tempe, AZ USAArizona State Univ, Biodesign Inst, Ctr Mech Evolut, Tempe, AZ 85287 USA
Eder, Rachel
Schmidlin, Kara
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Biodesign Inst, Ctr Mech Evolut, Tempe, AZ 85287 USA
Arizona State Univ, Sch Life Sci, Tempe, AZ USAArizona State Univ, Biodesign Inst, Ctr Mech Evolut, Tempe, AZ 85287 USA
Schmidlin, Kara
Geiler-Samerotte, Kerry
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Biodesign Inst, Ctr Mech Evolut, Tempe, AZ 85287 USA
Arizona State Univ, Sch Life Sci, Tempe, AZ USAArizona State Univ, Biodesign Inst, Ctr Mech Evolut, Tempe, AZ 85287 USA